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Abstract— Recent advancements in 2.5-D integration tech-
nologies have made chiplet assembly a viable system design
approach. Chiplet assembly is emerging as a new paradigm for
heterogeneous design at lower cost, design effort, and turnaround
time and enables low-cost customization of hardware. However,
the success of this approach depends on identifying a mini-
mum chiplet set which delivers these benefits. We develop the
first microarchitectural design space exploration framework for
chiplet assembly-based processors which enables us to identify
the minimum set of chiplets to design and manufacture. Since
chiplet assembly makes heterogeneous technology and cost-
effective application-dependent customization possible, we show
the benefits of using multiple systems built from multiple chiplets
to service diverse workloads (up to 35% improvement in energy-
delay product over a single best system) and advantages of chiplet
assembly approaches over system-on-chip (SoC) methodology
in terms of total cost (up to 72% improvement in cost) while
satisfying the energy and performance constraints of individual
applications.

Index Terms— 2.5-D integration, chiplet assembly, micro-
architectural design space exploration (DSE), multichiplet
optimization.

I. INTRODUCTION

M ICROARCHITECTURAL design space exploration
(DSE) for a general-purpose processor is tradition-

ally aimed at determining the microarchitectural parameter
values of one processor system that has the highest perfor-
mance or efficiency for a set of representative applications.
The goal is to arrive at the one system that has the highest
performance or efficiency for these applications. However,
applications are often targeted by using a family of processors
where each processor in the family targets a subset of the
applications. Consider Intel Xeon Product Family [1], for
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example. The product family targets nonconsumer worksta-
tions [2], servers [3], and embedded applications [4] using
different processors in the family. Even within the Xeon
Processor E7 family [2], there are a large number of processors
each targeting a different subset of workstation and server
applications. Using multiple systems to target applications pro-
vides an effective way to address heterogeneity in workloads,
objective functions (power versus performance), compute con-
ditions (battery-powered versus wall-powered), and cost.

Unfortunately, a countervailing trend—increasing processor
design, verification, manufacturing, and management costs
[5], [6]—is putting immense pressure on the number of
systems that can be used to target applications. As these costs
rise, designing and manufacturing a large number of systems-
on-chip (SoCs) may become infeasible.

As a result, new design and assembly methods [7]–[11]
are being developed and commercialized where different
chiplets can be connected using SoC-like low-latency and
high-bandwidth interconnect substrates. Thus, a large proces-
sor SoC can now be disintegrated into multiple, smaller
component chiplets and then reintegrated into a full processor
system. In fact, critical processor components can be parti-
tioned into separate chiplets and integrated on these high-
performance interconnects without significant performance
degradation (<5%) compared to SoCs [11]. Since smaller
chiplets often achieve better yield, this approach may decrease
overall system cost. Moreover, one can create many systems
using different combinations from a set of chiplets, allowing
a designer to tailor each system toward a particular subset
of applications. Therefore, reuse of chiplets across several
systems can help amortize the cost of chiplet design and
improve turnaround time. Furthermore, chiplets implemented
using different technology nodes can be integrated into the
same system—this may allow further reduction in design and
manufacturing costs. Overall, chiplet assembly is emerging as
a new paradigm for heterogeneous design at lower cost, design
effort, and turnaround time and enables low-cost customization
of hardware. However, the success of this approach depends
on identifying a minimum chiplet set which delivers these
benefits. Algorithmically exploring the design space and then
investigating cost, performance, and energy tradeoffs of such
chiplet-based customization are the goals of this article.

In this article, we ask three questions.

1) How should one set up the microarchitectural DSE
problem when a set of component chiplets will be used
to build a set of systems to target different applications?
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2) What are the microarchitectural characteristics of differ-
ent chiplets and the corresponding systems when each
system targets only a subset of applications instead of
the entire application set?

3) When total cost of the design and manufacturing is con-
cerned, what are the benefits of chiplet-based assembly
method and what chiplets and corresponding systems
need to be built?

We show that the DSE problem of identifying the best m
chiplets to build k system configurations for a set of n
applications is qualitatively and computationally very different
from conventional DSE where k = 1. We present integer-
linear programming (IntLP)-based formulations for solving
this selection problem. This is the first work on systematically
performing a microarchitectural DSE when multiple systems
will be used to target applications. This is also the first study
on a methodology to determine the number and characteristics
of chiplets required to target a set of applications. This article
makes the following contributions.

1) We develop the first optimization framework for solving
the multiple chiplet/system selection problem.

2) We show how chiplet assembly can deliver near-custom
system performance for every application with relatively
small number of chiplets.

3) We consider minimization of total design/manufacturing
cost by simultaneously solving chiplet and technology
selection. We also discuss chiplet characteristics when
cost-aware optimization is performed and show the
conditions under which chiplet assembly can be a major
cost-saver compared to SoCs.

4) We demonstrate the value of performing the chiplet DSE
across different suites of applications (high performance
to embedded applications) rather than performing the
exploration per suite. Chiplets can be reused across
different benchmark suites, thus maximizing opportunity
of design cost amortization.

The rest of this article is organized as follows. Section II
discusses representative work on processor DSE and
IP-reuse-based design. Section III motivates the value of
multiple systems as well the need for an effective multisystem
optimization strategy. Section IV presents our optimization
framework and cost model. Section V presents the experimen-
tal setup where we discuss our methodology, workloads, sys-
tem/chiplets evaluated, and the cost components. Section VI
discusses the results and the applicability of our framework
in different scenarios such as multicore and heterogeneous
systems. Finally, Section VII concludes this article.

II. RELATED WORK

A. Processor DSE

A large body of prior work on DSE has focused on explor-
ing the various parameters of a processor microarchitecture to
maximize overall performance of a processor while minimiz-
ing its power and energy overhead. Papaworth [12] discusses
optimizing the microarchitecture of the Intel Pentium Pro
processors. Kin et al. [13] propose a fast but accurate processor
DSE approach that estimates the performance bottlenecks in

a single-core design and predicts the performance effects of
tuning the bottlenecks. Frameworks such as ArchExplorer [14],
MULTICUBE [15], Magallan [16], and FADSE [17] enable
automatic DSE for multi-core architectures. Kumar et al. [18]
and Choudhary et al. [19] try to find configurations of cores
for a heterogeneous chip multiprocessor (CMP) where each
core can be tuned for a class of applications sharing common
attributes. However, in all these studies, the goal is to still find
the one, best performing processor, instead of a selection of
processors.

The closest related work is by Li et al. [20] and
Kin et al. [13]. The authors explore a multidimensional
design space for multicore architectures focusing on different
related parameters of a processor: area, power, pipeline depth,
superscalar width, and so on. They argue that it is challenging
to accommodate different application classes (e.g., memory
bound and compute bound) on one processor system and,
therefore, one needs to find the optimized parameters for each
class of applications. While these studies only focus on media
processors, they motivate us to look deeper into the paradigm
of multisystem processor DSE.

B. IP-Reuse-Based Design

Intellectual property (IP)-based design has been a dominant
driving factor in the integrated system design where pre-
designed modules are reused as plug-and-play system compo-
nents [21], [22]. SoC design methodology often uses available
IPs to decrease the total design time. These IPs come in
different forms: soft, firm, and hard. They vary in terms of
configurability, soft IPs being fully configurable, while hard-
IPs come as nonreconfigurable layouts. Automatic selection of
IPs from a library of IPs to match requirements has received
attention [23].

An emerging method of hard-IP reuse is chiplet assembly.
With advancement in interconnect technologies, novel integra-
tion schemes are now possible. Interposers [24], EMIB [10],
silicon-interconnect fabric [11], and wafer-level-fan-out [25]
technologies enable high-bandwidth, low-latency communi-
cation between individual chiplets mounted on these inter-
connects. Recent effort toward building systems have been
reported in the works by Schulte et al. [26] and Kannan [27].
Schulte et al. [27] proposed an exascale computing system
using chiplet-based integration. They argue that such a large
system is not possible on one single silicon chip due to
yield issues. Smaller high-yielding known-good-chiplets can
be integrated on highly efficient interconnect at reasonable
costs. Also once a chiplet is designed, it can be reused in
a multitude of systems. MoCHI [28] is another technology
to achieve an integration scheme where SoCs can be split
into multiple smaller cost-optimized modules and reintegrated
without compromising system performance.

In both these cases, the question of which chiplets to design
and which systems to construct from them to serve a set of
workloads remains unaddressed. In this article, we provide a
framework to choose the best m chiplets to manufacture and
target a wide variety of applications and the optimal set of
systems to build from them.
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Fig. 1. Benefit of assigning each workload to its best processor versus a processor optimized across all workloads.

Fig. 2. Benefit of assigning four processors optimized across all workloads versus four processors each optimized for one of the four benchmark suites.

III. MOTIVATION

Increasing the number of systems used to target perfor-
mance and efficiency can have significant benefits. Fig. 1
shows the benefits across 35 workloads selected from
four benchmark suites—SPEC2006 [29], EEMBC [30],
SPLASH-2 [31], and NAS Parallel Benchmark (NPB) [32]—
from assigning to each workload the best system available
from a design space of 652 systems with private L1s, private
L2s, and containing both in-order and out-of-order cores. The
best system chosen for each workload depends, of course,
on the metric. Benefits are normalized to a single system
that performed the best across all workloads for that metric.
As expected, without constraints on power or area, cycles-per-
instruction (CPI) is minimized by selecting only one system,
the largest issue width out-of-order core with the biggest
caches. For other metrics, while a selection of one system per
metric covers a large fraction of the workloads within 10%
of optimal performance, there are significant improvements
which can be achieved by picking a custom system per work-
load. For example, radix shows a 2.1× energy delay product
(EDP) improvement compared to the best average system,
cactusADM shows a 1.9× improvement in energy-delay-area
product (EDAP)1 and povray shows a 1.6× improvement

1The metrics of energy-delay-area2 product (EDA2P) and EDAP are
examples of comprehensive metrics that consider both performance and cost,
including both the operational cost (energy) and the capital cost (area). While
a chip vendor may favor EDA2P as area2 provides an approximation to die
cost in practice, a system vendor could prefer EDAP as other fixed system
costs such as memory and I/O reduce the overall system cost dependence on
CMP cost. The new metrics are shown to reveal new design sweet spots that
cannot be found using other current metrics [33].

in EDA2P. As such, an effective exploration of the processor
design space to allow selection of the (near) best system for
a given workload could be very beneficial.

Since there is typically smaller variation within a single
benchmark suite than across suites, one may be inclined to
subset the workloads into their respective benchmark suites
and select a system for each suite. Unfortunately, with this
strategy, there are still certain outlier applications which are
inadequately covered for some metric (see Fig. 2). This obser-
vation is consistent with prior works [19], which suggested
that in the context of heterogeneous multicores, after selecting
five cores to service average workloads, outlier workloads
dominate core selection. When four systems are selected per
metric using our optimization algorithm (see Section IV-A),
all of the outlier workloads are covered within 10% of their
optimal performance. Therefore, a systematic selection method
is necessary to maximize the benefits of having multiple
systems while minimizing the number of chiplets required.

Reducing the number of chiplets, processors, or processor
component IPs can reduce the design, manufacturing, assem-
bly, and management costs. Section IV-A describes how we
formulate the different multisystem processor optimization
problems under different constraints for the number of proces-
sors, processor component IPs, or chiplets.

IV. OPTIMAL SELECTION OF CHIPLETS

DSE of single-core [12], [13], multicore [14], [17], [34],
and heterogeneous multicore [18], [19] processors has received
a lot of attention in the past decades. However, in all these
works, the goal is to find the one, best performing processor,
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instead of a selection of processors. The potential gains from
a multisystem approach, albeit in context of media proces-
sors, have been discussed previously [13], [20]. This article
identifies the systems, constituent chiplets, and technologies
to build them in order to deliver adequate per-application
performance.

In this section, we describe a framework to select the m
chiplets and the k systems to be built with these chiplets with
the objective of either optimizing the EDP of the applica-
tions, or minimizing total cost of the systems. In our experi-
ments, we considered a system is composed of core + L1 and
L2 chiplets; given a performance estimator, other chiplets
with different functionality (L3, accelerator, and so on) can
also be considered in the framework. Here, we assumed
that all chiplets would use standardized interface (physical
layer, PHY) protocols to communicate with each other
(e.g., Intel’s AIB protocol [35]). These protocols can usually
be extended to support any width of the interface and adds only
one additional cycle of latency to the interface. The chiplets
can still use the same higher level protocols (e.g., packetization
schemes) as in an SoC implementation.

When k = 1 (systems) or m = 2 (chiplets), the problem
becomes the conventional DSE problem. The nature of the
problem changes for m > 2 or k > 1. For n possible systems,
the search space increases from O(n) to O(2n) going from
single system to multisystem DSE. First, we describe an IntLP
framework to optimally solve the multichiplet selection prob-
lem. When the number of chiplets/systems/workloads are large
(�10 000), the IntLP formulation can become computationally
challenging where well-known heuristic methods can be used
(e.g., LP relaxations). We focus on optimal solutions as, for
our problem sizes, IntLP can be solved by commercial solvers
[36] in few minutes. Furthermore, formulating the problem as
an IntLP gives us immense flexibility in setting up a variety
of constraints and objectives within the same optimization
framework as would be illustrated by the experiments in the
subsequent sections. The notation used in this section are
described in Table I. First, in Section IV-A, we describe an
IntLP framework to optimally solve the multisystem/chiplet
selection problem. Our chiplet assembly cost model used for
cost-aware optimization is described next in Section IV-B.

A. IntLP DSE Framework

One can visualize the problem as shown in Fig. 3. The
microarchitecture design space is used to constitute the set
of chiplets and systems. For example, in our DSE with
single-core systems, a system is considered to be composed
of two chiplets, core + L1 and L2. The initial set of
microarchitectural parameters, such as size and associativity
for L1 and L2 caches and size, type, execution units, and
so on for the core, could be used to determine the set of
chiplets and systems in the optimization problem. Here, the Ds

d
edges indicate which chiplets are part of a system. Multiple
copies of the same chiplet microarchitecture may be included
in the initial set of the chiplets (D), representing different
technology nodes. The set of system configurations (S) is the
set of all systems that can be composed out of the chiplets.
Each application can be assigned to run on any system and

TABLE I

NOTATION

Fig. 3. Illustration of the multichiplet selection problem.

the cost [n-tuple containing the power, performance in CPI,
energy-per-instruction (EPI), EDP, and total cost] associated
with that is given by W a

s . In the absence of chiplet constraints,
the multisystem selection problem is related to minimum
maximal bipartite matching.

For a given set of chiplets and applications, we formulate
the IntLP optimization as follows:

Minimize:
�

a∈A

�

s∈S

xa
s ∗ W a

s .N j

Subject to:
�

s∈S

xa
s = 1, a ∈ A (1a)

�

s∈S

xa
s ∗ W a

s .Np ≤ χap, p ∈ [1, n]; a ∈ A

(1b)�

s∈S

xa
s ∗ cs ≤ αa, a ∈ A (1c)

xa
s ≤ xs, s ∈ S; a ∈ A (1d)�

a∈A

xa
s ≥ xs, s ∈ S (1e)

�

s∈S

xs ≤ K (1f)

yt
d ≥ Ds

d ∗ xs s ∈ S; d ∈ D; t ∈ T (1g)�

s∈S

Ds
d ∗ xs ≥ yt

d d ∈ D; t ∈ T (1h)

�

d∈D,t∈T

yt
d ≤ L . (1i)
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The objective is to minimize the sum of a normalized
metric, such as EDP, or total cost, over all application-system
assignments. Each metric is normalized for each application
with respect to the best possible custom system for that appli-
cation. Note that other objective functions such as maximizing
performance, or different objectives for different applications
can also be used.

Constraint (1a) assigns exactly one system to every
workload. Constraint (1b) is used to ensure that for metric
p, the system k chosen for an application a is better than
χap threshold. We primarily use it to enforce a minimum
normalized CPI or EDP constraint in our optimizations.
Constraint (1c) enforces application-specific area (or power)
constraints (e.g., for low-cost or thermally constrained
systems). Constraint (1d) ensures that a system selected to
service an application is present in the final system set.
Constraint (1e) guarantees that every system in the final
set services at least one application. Constraint (1f) is an
optional constraint which upper bounds the total number of
systems selected to k. Constraints (1g) and (1h) ensure that a
chiplet is chosen if and only if it is part of a chosen system.
Constraint (1i) is optional and puts a cap on the maximum
number of chiplets allowed.

B. Chiplet Assembly Cost Model

Cost brings in an interesting dimension to the multichiplet
selection problem. Migrating to an advanced technology node
provides benefits in terms of area and power but increases
design and manufacturing costs. Cost of a chiplet can be bro-
ken down into two major components: nonrecurring engineer-
ing (NRE) cost and volume-dependent recurring cost. NRE
costs include architecture, RTL design, IP validation, physical
design, prototype, validation, and mask manufacturing cost.
In our cost model, we consider the cost difference between
the logic and SRAM as well. Due to its regular structure,
memory design is typically less expensive than the logic of
the same size. Moreover, SRAMs typically use fewer metal
layers resulting in lower manufacturing costs as well.

We assume the recurring cost to be the cost of wafer
fabrication. Yield and process complexity are the primary
factors which determine the fabrication cost. Advanced tech-
nology nodes require larger number of process steps on more
expensive equipment, increasing manufacturing costs.

We use the yield learning model given in [37] to model
the yield improvement over time so as to account for process
maturity

Y (t) = Yasymp × (1 − exp(−ct)) (2)

where Y (t) is the yield at time t after launch of the
technology node. We considered 50% yield at the time of
process node introduction and that the yield reaches 95%
when t = 2 years. Yasymp is the asymptotic yield deter-
mined by the die area (Adie), defect density (D0), and clus-
tering factor (α) and is given by the well-known negative
binomial model

Yasymp =
�

1 + AdieD0

α

� −α

. (3)

Fig. 4. Experimental methodology for design space generation.

Recurring cost of manufacturing (Cmfg) taking into consid-
eration the volume of dies required (Vd ), wafer cost (Cw),
yield (Y ), and the number of dies per wafer (Ndie) is given by

Cmfg = Vd × Cw

Ndie × Yield
. (4)

We use the following objective function when the total cost
minimization is considered for chiplet-based assemblies:
�

a∈A

�

Va ×
�

�

s∈S

xa
s

�

C int +
�

d∈D

Ds
d ∗ Cmfg

d

���

+
�

�

d∈D

�

t∈T

yt
d ∗ NREt

d

�

+
�

d∈D

� ∨t∈T yt
d ∗ NREnt

d

�
(5)

where Va is the volume of systems required for application a.
C int is the chiplet assembly/integration cost, Cmfg

d is the cost of
manufacturing of chiplet d and is estimated using (4). NREt

d is
the technology-dependent NRE cost which includes physical
design, IP validation, prototype, mask set cost, and so on.
NREnt

d is the technology agnostic NRE cost which includes
architecture, RTL development and verification, and so on.
When a particular microarchitecture is used to build chiplets in
two different technology nodes, NREnt

d is amortized; however,
NREt

d expense is required for every technology node the
chiplet is built.

The result of the IntLP solution is an optimal set of
chiplets, and the systems constituted out of the chiplets and
the application-system mapping.

V. EXPERIMENTAL SETUP

A. Methodology

The methodology for our DSE is an iterative process con-
sisting of three main steps (see Fig. 4). First, we identified a
set of interesting initial system configurations to explore. This
set of configurations (provided in Table II) must be diverse
enough so that changing any parameter has a measurable
impact on either power, area, or performance of the system
running an application. In addition, these configurations should
vary enough such that their range tightly covers the range of
application behavior.

Next, we performed a full factorial exploration of these
initial system configurations. To evaluate performance of
designs, we used Sniper [38], a fast trace-driven multicore
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TABLE II

SYSTEM PARAMETERS AND THEIR VALUES

interval simulator. Sniper is significantly faster than gem5:
this is important because the sheer number of simulations
required for a full factorial exploration is large. We used
the ROB-centric model in Sniper, which more accurately
models in order cores and issue contention. We studied trade-
offs related to multicore systems too. For the performance
and energy calculation of multicore systems considered in
Section VI-B and heterogeneous multicores in Section VI-H,
we made a simplifying assumption that two single-threaded
workloads running on separate cores of a dual-core system
do not interfere and that their aggregate performance is the
summation of the IPCs when each workload is run individually
on a single core. Past works [18] have made such assumptions.
However, we also performed an experiment (in Section VI-I)
with homogeneous multicore system running multithreaded
benchmarks with a shared-L2 cache.

L2 cache access usually takes ∼10 cycles. For the perfor-
mance simulations, we assumed that the L2 caches have a
12-cycle access. Changing the latency by one cycle (due to
interface protocol circuitry) resulted in a negligible perfor-
mance difference (worst case <3%) as most of the memory
accesses from the cores are served by the L1 cache which lies
in the same chiplet as of the core. Therefore, we used the same
performance numbers for SoC and chiplet in order to avoid
duplicate simulation runs.

For area and power modeling, we modeled 22-, 32-, and
45-nm processes using McPat 1.0 [33], which is deeply
integrated with Sniper. To calculate average power and energy
for our primary results, we excluded DRAM energy. We per-
formed a sensitivity analysis of our results when including
DRAM and found that the trends and analysis were largely
unchanged.

The design space of this initial set of systems is pruned
using a canopy clustering technique similar to [39] such that
systems which are worse (or within 5%) with respect to the rest
of the systems for every metric of interest on all workloads are
removed from consideration. We then added new configura-
tions to our reduced design space. This clustering usually cuts
down the design space by 3×–10× with negligible impact on
eventual optimized metrics. This is important as DSE runtime
is dominated by microarchitectural simulation.

Last, we used the optimization algorithm described in
Section IV-A to select the best chiplets and systems to cover
the given workloads.

Runtime: The total runtime of an IntLP instance lies
between 1 and 4 min depending on the contraints, while
a Sniper simulation run for a particular system–workload
combination takes about 20–30 min.

TABLE III

WORKLOADS EVALUATED

B. Workloads Evaluated

A diverse set of workloads were chosen by subset-
ting four benchmark suites—SPEC2006 [29], EEMBC [30],
SPLASH-2 [31], and NPB [32]. We chose 14 applications
from SPEC2006 based on [40] in order to demonstrate the
diversity of the suite without capturing redundant results
between benchmarks. SPEC2006 applications were simu-
lated using 100M-warmup, 30M-detail Pinballs [41] with
max K = 10 (up to ten SimPoint regions are simulated in
total). Four benchmarks selected from NPB were simulated
using 100M-warmup, 30M-detail Pinballs with max K = 10
and input size W . Twelve benchmarks from the telecomm and
automotive suites of EEMBC were simulated by running them
in a loop in detailed mode for 30M instructions. SPLASH-2
benchmarks were run single-threaded with fast-forwarding
until the region of interest (ROI) was simulated in full.
A complete list of chosen benchmarks is shown in Table III.

C. Systems and Chiplets Evaluated

We relied on previous work [18] to make our initial design
space selection with a few differences in order to more
accurately model the systems in Sniper which is based on a
Nehalem-like architecture [42]. For instance, Sniper does not
model the number of functional units, but instead multipurpose
instruction ports, which can be used to service a subset of
instructions. We provide configurations for both a traditional
Nehalem architecture and one with double the number of
instruction ports. Additionally, due to a lack of accurate
functional modeling in Sniper, we did not consider different
physical register file sizes.

For this article, we considered that a single-core processor
system is comprised of two chiplets: core with L1 cache
(core + L1 chiplet) and L2 chiplet. We considered the
interconnect characteristics to match those of the state-of-
the-art chiplet assembly approach presented in [11]. With
latency and energy-per-bit overheads comparable to those of
traditional SoCs, core + L1 and L2 chiplet systems require
no substantial microarchitectural changes compared to their
single-die counterparts.
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TABLE IV

NORMALIZED COST COMPONENTS AT DIFFERENT TECHNOLOGY NODES

We first performed simulations on all core (includes
L1 caches) configurations, with a constant 1-MB L2 cache.
We fully explored these configurations and then trimmed the
design space to a smaller set using the clustering approach
described earlier. We then simulated this reduced set of cores
with a wide range of L2 cache sizes to construct a broader
design space for our diverse set of workloads. Finally, we used
these results to generate power, energy, and area results for
chiplets implemented in 22-, 32-, and 45-nm technology nodes.
Because we assume the same microarchitectural parameters
for a chiplet across technology nodes, performance charac-
teristics of each chiplet remain the same. We also considered
systems built out of heterogeneous technology chiplets for our
evaluations. In all, we considered a total of 5868 system con-
figurations in our homogeneous-core (single- and multicore)
studies and 10 404 system configurations for the heterogeneous
multicore case.

D. Cost Components and Volume
The cost model used in our formulation has been presented

in Section IV-B. The various cost components used in the cost
model for the evaluations are shown in Table IV [43]–[45].
Note that for SRAM, the design cost was considered to be the
cost of a memory compiler license and a few engineers. SRAM
chiplets would also usually use only five to six BEOL layers
as compared to 10–12 metal layers for logic (both use all the
FEOL layers). Therefore, we scaled the mask and recurring
wafer cost accordingly.

We considered the chiplets to be integrated on 2.5-D sub-
strates such as silicon interposers [7], silicon interconnect
fabric [11], or EMIB [10]. On these substrates, the chiplets
can have an inter-chiplet spacing of <1 mm (even <100 μm).
Also because of fine pitch interconnections, the interfaces are
usually wide and signaling is done at frequencies of 2–4 GHz,
and therefore the I/Os driving these substrate wires can be
simple multistage buffers (with small ESD circuitry) [10], [11]
which are area and energy efficient. Therefore, considering
∼2000 IOs between a core and a cache chiplet, we added an
overhead of 0.5 mm2 (conservative estimate) to the chiplet
areas.

The cost of integration and bonding, i.e., C int, was assumed
to be similar to the data in [46]. We also performed sensitivity
analysis with 2× and 4× the assembly cost, because in reality,
the cost of 2.5-D have been very high and is in fact used for
a niche class of high-performance processors only. We used
the ITRS data [47] for D0 and α while calculating the yield.
To estimate the per chip vendor volume per year, we used the
global estimates of phone and tablet sales (180 million units

per vendor) [48] for the EEMBC suite, aggregate PC and lap-
top sales (90 million units per vendor) [49] for SPLASH and
SPEC suites combined and global ×86 server sales (10 mil-
lion units per vendor) for the NPB suite [50]. We divided
the total volume in each suite by the number of workloads
in each suite to uniformly distribute volume demand among
individual workloads. The cost analysis is done for different
sizes of the system. System size of N× (in Fig. 6) is the one
where N copies of core + L1 chiplet and L2 chiplet constitute
a system. For such multicore systems, the NRE design cost
is considered for only one copy of the core. As an example,
for a system with N ARM-based cores connected using AXI
interconnect, the same core IP is replicated multiple times
and connected to the scalable AXI interconnect IP. Therefore,
the design cost incurred would be roughly similar to that of
a single-core system with the interconnect. For performance
and energy simulations, we consider that N instances of the
same workload are executed on the N-core system. The cost
optimization is also performed for different production start
years to understand the impact of process maturity on cost.
As processes mature, yield increases and this brings down the
manufacturing cost per good chiplet.

Note that for some of the experiments where the goal is
to capture both the energy and area cost, we used EDAP and
EDA2P as examples of composite metrics. This also shows
that the framework is flexible and can be used in a variety of
contexts.

VI. RESULTS

Here we discuss the characteristics of the chiplets, their
usage and sharing across workloads and benchmark suites,
cost implications, and so on. Note that we allow chiplets to be
selected from different technology nodes in our optimizations.
Also, the results shown here are for a small but interesting set
of optimization objectives and constraints; however, the IntLP
framework is flexible enough such that one can study many
different objectives and constraint combinations.

A. Minimizing EDP With CPI Constraint

First, we consider EDP minimization as the objective with
constraints on maximum CPI and number of unique chiplets.
A CPI threshold t ensures that any selected system–workload
pair have CPI less than t times the minimum CPI for that
workload which can be obtained on the best performing
system. As shown in Fig. 5, having more chiplets avail-
able allows significant reduction in average EDP. Initially,
the benefit from adding more chiplets is high, as the first
few systems selected out of the chiplets target broad workload
classes such as memory-bound or compute-bound applications.
As more chiplets are added, new systems primarily target out-
lier workloads, resulting in incremental average improvement.
When the CPI threshold is very strict, the benefit quickly
saturates since only a subset of systems are available for
selection. However, for more relaxed CPI thresholds, seven to
eight chiplets are required to attain near-optimal EDP. Since
migrating to a newer technology node results in reduced EDP,
all the chiplets selected in this cost-agnostic optimization were
exclusively in 22-nm technology. Using multiple chiplets can
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Fig. 5. Pareto curve showing average normalized EDP versus maximum
number of chiplets allowed in the optimization. We show the Pareto curves
for different CPI thresholds.

have greater than 35% reduction in EDP over a single average
best system (m = 2).

Chiplet Microarchitecture: CPI threshold of 1.1 requires
a minimum of four chiplets to be feasible. When only two
unique chiplets are allowed (i.e., an average best system) for
CPI thresholds of 1.2, 1.5, and 2.0, the same medium out-of-
order core + L1 chiplet gets selected. However, the size of the
selected L2 cache varies from 2 to 1 MB to 512 kB, respec-
tively, for the three threshold values. When three chiplets are
allowed, an additional cache gets added in all three cases (the
smaller 512 kB for 1.2 and 1.5 CPI thresholds and the bigger
2 MB for the 2.0 case). This shows that cache variety has a
major impact on EDP.

When four unique chiplets are allowed for CPI thresholds
of 1.2 and 1.5, a smaller core chiplet with small L1 D-cache
is added. Only when CPI is relaxed to 2.0, one in order
core chiplet gets selected. With four chiplets, CPI threshold
of 1.1 now becomes feasible and requires 1- and 2-MB
L2 caches alongside two core + L1 chiplets, in which the
core components are same but the L1 caches are large (64 kB)
and small (16 kB), respectively. Initially when chiplets are
added, having a variety of L2 cache sizes minimizes EDP.
With more chiplet varieties, having large and small cores is
more essential.

B. SoC Versus Chiplet-Assembly Cost Analysis

When systems are implemented via chiplet assembly rather
than IP integration on an SoC, use of smaller chiplets results in
higher yield and thus reduces cost. We perform DSE with total
cost minimization objective with EDP threshold constraint.
Chiplet-based assembly provides substantial cost benefit over
an SoC approach as shown in Fig. 6. When the system size is
small, SoC yield is good. This, along with the added cost of
chiplet integration, results in a meager 10%–14% cost benefit
over a single-core SoC system when the integration cost is
considered to be the same as in [46]. However, in multicore
systems as the system size increases, the SoC yield decreases
according to (3). Because of the negative binomial nature of
the yield curve, beyond a certain die size, the yield decreases
rapidly. As a result, in Fig. 6, we observe that going from
a single-core to a dual-core system, SoC integration results
in per-core cost improvement, however increased yield issues
result in increased cost as the system is scaled to a four-core

Fig. 6. Curve showing cost benefits of chiplet-based assembly over SoC for
different sizes of the system and technology maturity level.

and eight-core system. Using a chiplet assembly, copies of
the same core + L1 and L2 chiplets are utilized and the yield
of these smaller dies remains the same. Moreover, the NRE
cost of developing these chiplets gets amortized as the system
size grows. Though the interconnect substrate and chiplet
assembly cost grows with the size of the system, it is a smaller
fraction of the overall cost. Therefore, this results in reduced
total cost per core + L1 and L2 chiplets using chiplet-based
assembly despite a slight increase in system integration cost.
We confirmed this trend by running our optimization across
several EDP thresholds.

Apart from yield benefits, fewer chiplets are needed to
assemble a large number of systems. The fact that relatively
few unique chiplets can be mixed and matched to serve a wide
array of applications bodes well for an era of customizable
systems using chiplet assembly approach. In today’s era of
multicore processors, chiplet assembly can provide significant
cost benefits, which will only improve as processors become
larger and core count continues to increase.

Sensitivity to Assembly Cost: As mentioned earlier, there has
not been a large improvement in 2.5-D integration cost and
the overall cost remains quite high today. As seen in Fig. 6,
when the integration cost is higher (4× assembly cost), the gap
between the SoC and chiplet assembly becomes smaller.
In fact, when the system size is small, chiplet assembly can be
costlier than SoC. As the technology matures, the cost of SoC
drops but integration cost does not drop much and therefore,
larger dual-core (2×) systems have smaller (or diminished)
gap in cost between SoC and chiplet assembly. However, when
the system is even larger (4× or 8×), the worsened yield of
larger SoC dies leads to rapid increase in SoC costs while
even with 4× assembly costs, chiplet assembly-based systems
come out ahead by as much 23%.

C. More Applications Share Chiplets Than Share Systems

Systems can share chiplets and, hence, m chiplets allow us
to construct � m systems. Systems serving different applica-
tions can share the same chiplets. We observe an example of
chiplet sharing with the L2 caches. EEMBC workloads have
smaller working sets, so they tend to use smaller L2 caches.
However, a few workloads from SPEC and SPLASH-2 which
also have smaller working sets can benefit from sharing these
smaller L2 caches. We observe that when a large number
of chiplets are available, most chiplets are shared across
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Fig. 7. Curve showing tradeoff for EDP and total cost at different technology
maturity levels.

benchmarks suites. The degree of reuse is much higher in this
case than that when only system/SoC is considered because
once the number of available systems increases, quite a few
systems get selected that only cater to specific workloads from
one workload suite.

D. EDP-Cost Tradeoff

Harsher EDP constraints (low threshold value) require more
systems to minimize costs, essentially trimming the design
space for each workload so that fewer systems are available
for selection. This leads to excessive customization with little
sharing of systems across workloads. Hence, the number of
distinct chiplets required to build these systems increases,
which results in higher NRE costs (shown in Fig. 7). As the
EDP threshold constraint is relaxed, the optimization begins
to select smaller cores and smaller L2 chiplets. Overall,
fewer chiplets and systems are selected, increasing sharing
across workloads. Increased sharing helps amortize NRE
costs, resulting in reduced total costs. In fact, when the EDP
threshold is low, the cost difference is much more dramatic
(>34% for threshold of 1.1) between production start during
22-nm launch year and subsequent years than higher thresh-
olds (>16% for threshold of 2.5).

For a particular total cost budget, as technology matures,
one can achieve better overall EDP. This is because more
chiplets and hence more systems tailored toward particular
set of applications can be built for the same total cost when
technology matures.

E. Impact of Technology Maturity

Technology selection of chiplets is a key factor which deter-
mines the overall cost of designing and fabricating multiple
chiplets. Migrating to an advanced technology node reduces
power and therefore EDP. Additionally, area per transistor
decreases, leading to reduced chiplet size. However, lower
wafer yield and higher NRE and manufacturing costs may
outstrip the benefits of accommodating more chiplets per wafer
in an advanced technology node. These costs are much higher
during the early stages of a technology node. Fig. 6 shows how
total cost varies with production start year. Our evaluations
with 22-, 32-, and 45-nm technology show that although it
is attractive to migrate to the 22-nm node because of the
EDP and area benefits, a few chiplets are still chosen from

Fig. 8. Curve showing the difference between minimizing the number of
chiplets versus total cost. The experiments were done for system size of 1×
and production during 22-nm launch year.

32-nm technology during the early stages of 22-nm node.
However, it is interesting to note that more core + L1 chiplets
are chosen from 32-nm technology than L2 chiplets. This
is because the SRAM L2 chiplets are heavily shared across
multiple workload suites and thus the high volume amortizes
the NRE cost of the SRAM dies.

When the 22-nm technology matures (yield increases) and
the fabrication cost decreases, building chiplets in 22 nm
becomes attractive. Thus, all the chiplets are chosen from
22-nm technology when the production start is one or more
years after 22-nm launch. In Fig. 6, depending on production
start, up to 72% cost reduction can be achieved by chiplet
assembly over SoC methodology while satisfying the EDP
constraints per workload. Chiplet assembly’s continuing cost
benefits make it the ideal choice for building systems irre-
spective of production start year. Moreover, the cost benefits of
chiplet assembly, especially through technology heterogeneity,
are likely to be even higher as technology scales below 22 nm
where manufacturing NRE costs are much higher (e.g., due to
extensive use of multiple patterning lithography).

F. Minimizing Number of Chiplets Versus Cost

Here we show that optimization with the goal of minimizing
the number of chiplets does not necessarily result in minimum
total cost. As shown in Fig. 8, when EDP threshold is
relaxed, chiplet minimization results in smaller number of
chiplets than when cost is minimized. However, the total
cost of design and manufacturing remains much higher than
when cost minimization is the objective. This is because
chiplet minimization chooses fewer but larger chiplets (lower
yield and costly) to satisfy the EDP constraints of all the
workloads while cost minimization chooses more number of
smaller (less costlier) chiplets to build multiple systems, each
tailored toward different types of workloads. For example,
when EDP threshold is 2.0, cost minimization results in one in
order, one small OOO, 256- and 512-kB L2 caches, whereas
chiplet minimization returns two large OOO core and 512-kB
L2 cache.

G. Efficacy of Proposed Optimization Framework

The IntLP framework solves the multisystem, multichiplet
selection problem optimally. Here, we briefly compare our
optimization to two other naive selection algorithms (as shown
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Fig. 9. Comparison between different system selection approaches for
each metric when compared to the baseline case of best custom system per
workload.

in Fig. 9). All selection algorithms are evaluated with a CPI
constraint of 1.5, normalized to the best performance of each
workload across all systems. “Best Average System” selects
the system with the best average for a single metric which
meets the CPI constraint across all workloads. “Greedy 8”
selects first the best system which meets the CPI constraint
across all workloads, then iteratively selects the next sys-
tem which improves the metric, only using the new system
to cover workloads for which it meets the CPI constraint.
Our IntLP-based optimization framework can be up to 65%
(EDA2P) better than the naive heuristics.

H. Optimization for Homogeneous Multicores

Our methods of finding optimal set of chiplets can
be applied directly to homogeneous multicores by con-
sidering, for example, shared L2 as a chiplet, multiple
core + L1 chiplets in a system, and multithreaded benchmarks
as workloads. For an evaluation with the SPLASH-2 suite,
we find that five systems are still required to minimize metrics
such as EDAP and EDA2P for CPI-constrained systems.
As observed in the previous experiments (without shared
L2 cache), the set of final systems included a mix of system
sizes, from small in order cores to medium-sized OoO cores
to big OoO cores with a large cache. However, the progression
toward a smooth gradient in system sizes that we observed in
those system sets is not present in multicore system selection.
Instead, we observed that an optimal system set contains a
system with large OoO cores with a large shared cache and a
set of systems with much smaller L2 shared cache size but
a variety of smaller core sizes. This is because the larger
system caters to the workloads with large working sets which
otherwise would observe degraded performance if they are
run on processors with smaller caches as interference between
threads increases. We also observe that for such system,
the positive effect of L1 cache sizes on system performance is
diminished because of coherence overhead and false sharing.

Because of the disproportionate impact of L2 size on
system performance, when selecting homogeneous shared-
L2 multicore systems based on chiplet sharing, we see a
very similar pattern of microarchitectures as when disregarding
chiplets (i.e., SoC implementation). This suggests that the opti-
mal system configurations for these homogeneous multicore
systems are not as flexible as single-core systems. That is,
the differences in relative performance across optimal systems

Fig. 10. Benefit in EDA2P (normalized CPI threshold = 1.2) for hetero-
geneous CMP is shown for the cases where number of systems (SoCs) is
taken into consideration versus when number of chiplets is considered in the
optimization.

for these workloads is large enough such that substituting
a closely related chiplet for cost reasons will substantially
degrade performance. While the sensitivity of workload per-
formance to L2 size specifically may be an intrinsic property
of SPLASH-2, we conclude that shared chiplets (L2 in this
case) such as those present in a multicore system may have
an especially large impact on the exact choice of chiplet
microarchitectures.

I. Optimization of Heterogeneous CMP Systems

Modern processor systems are increasingly heterogeneous,
incorporating a variety of core types, memories, and acceler-
ators. Our system/chiplet selection framework is also easily
adapted to heterogeneous settings by essentially enumerating
candidate heterogeneous systems and application sets within
the framework. Of course, we realize that computational
scalability may become a concern here but we believe our
clustering-based design-space pruning coupled with a smart
initial design of experiments can provide a solution. Also
to speedup the performance runs, if one has parameterizable
RTL, FPGA emulation can be used which could potentially
lead to 100× or more speedup compared to software simu-
lation. As an example, we studied heterogeneous dual-core
(i.e., big–little architecture) systems where each core runs a
SPEC2006 benchmark application. Therefore, in this article,
a total of 276 application pairs were considered. Fig. 10 shows
the chiplet and system (SoC) exploration results. We make two
observations. First, due to the dramatically increased diversity
in workloads (pair of applications) to be run on a single dual-
core system, the number of unique systems (composed out
of chiplets) needed to achieve good performance is almost
ten times higher compared to the single-core case. Second,
the number of chiplets required to achieve the peak perfor-
mance is significantly less than the number of distinct SoCs
required to achieve the same metric. For example, more than
50 dual-core SoCs are required to achieve the best EDP with
a CPI constraint of 1.2×. However, similar EDP requires less
than 23 chiplets because a majority of chiplets are shared
across the systems. This shows that chiplet-based assembly
could be leveraged to generate a large number of these systems
by manufacturing only a few types of chiplets. Thus, finding
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