
Approximate Bitcoin Mining

Matthew Vilim
University of Illinois at
Urbana-Champaign

mvilim2@illinois.edu

Henry Duwe
University of Illinois at
Urbana-Champaign

duweiii2@illinois.edu

Rakesh Kumar
University of Illinois at
Urbana-Champaign

rakeshk@illinois.edu

ABSTRACT
Bitcoin is the most popular cryptocurrency today. A bedrock
of the Bitcoin framework is mining, a computation intensive
process that is used to verify Bitcoin transactions for profit.
We observe that mining is inherently error tolerant due to its
embarrassingly parallel and probabilistic nature. We exploit
this inherent tolerance to inaccuracy by proposing approxi-
mate mining circuits that trade off reliability with area and
delay. These circuits can then be operated at Better Than
Worst-Case (BTWC) to enable further gains. Our results
show that approximation has the potential to increase min-
ing profits by 30%.

CCS Concepts
•Hardware → Fault tolerance;

Keywords
Bitcoin; SHA-256; Approximate Computing; Error-Tolerance

1. INTRODUCTION
The Bitcoin cryptocurrency provides a decentralized and

distributed method of verifying monetary transactions be-
tween trustless parties1. Although cryptocurrencies had been
proposed previously, Bitcoin was the first to provide a truly
trustless solution. Unlike a traditional monetary system
which is issued and backed by a single entity, Bitcoin requires
no central administrator nor trust between participants.

Traditionally, the difficulty in creating a distributed cur-
rency is the need for a scheme to prevent double spending.
One party might simultaneously broadcast two transactions,
sending the same coins to two separate parties on the net-
work; but without a central server to arbitrate both transac-
tions and decide which is valid, disagreement arises over the
true history and ownership of a given coin. Created in 2008,

1At the time of this writing, Bitcoin’s market capitalization
is $5.5 billion USD.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

DAC ’16, June 05-09, 2016, Austin, TX, USA
c© 2016 ACM. ISBN 978-1-4503-4236-0/16/06. . . $15.00

DOI: http://dx.doi.org/10.1145/2897937.2897988

Bitcoin resolves this problem and guarantees consensus of
ownership by maintaining a public ledger (Section 2.1) of all
transactions, called the blockchain [11]. New transactions
are grouped together and are checked against the existing
history to ensure all new transactions are valid.

Bitcoin’s authenticity is assured by those who contribute
computation power to its network (known as miners) to ver-
ify and append transactions to a public ledger. Miners’ will-
ingness to lend their computation power to the network, typ-
ically in the form of ASICs dedicated to mining, in exchange
for reward (profit) is critical to the security and survival of
Bitcoin.

In this paper, we observe that Bitcoin mining is a suitable
candidate for approximate computing. As we demonstrate,
Bitcoin mining is intrinsically resilient to errors; its parallel
nature minimizes the propagation of errors incurred while
searching for a solution, and Bitcoin’s distributed verifica-
tion system detects and invalidates any potentially erroneous
solutions. As such, a Bitcoin mining ASIC can be built out
of approximate circuits that trade off circuits’ reliability for
reduced delay and area; an appropriate approximate circuit
will maximize profit even when producing results that are
not guaranteed to be correct.

We propose two forms of approximation. Functional ap-
proximation is performed by replacing circuits with approx-
imate versions to reduce area or delay. The reclaimed tim-
ing slack may then be used to raise frequency and increase
throughput. Operational approximation is performed by re-
ducing guard bands and running the circuit with negative
timing slack (i.e. at an even higher frequency), allowing occa-
sional timing failures and Better Than Worst-Case (BTWC)
operation. Our results show a 30% increase in mining profit
from these approximation techniques.

2. BITCOIN MINING

2.1 Overview
To maintain the validity of transactions in the Bitcoin

network, there must be an incentive to contribute to verify-
ing transactions within the blockchain. Bitcoin provides this
incentive by rewarding miners who contribute with new bit-
coins for every block created. Without miners, new transac-
tions cannot be added to the public ledger, and Bitcoin will
not function. The mining process is summarized in Figure 1.
Mining consists of searching for a cryptographic nonce value
within a block such that the hash of the block falls within a
certain range. The network scales the range to maintain an
average rate of one new block every ten minutes.

Figure 1: Mining Process Block Diagram

SHA-256 SHA-256

SHA-256

H(0)

digest

block header

comparator

solution?

threshold

nonce

As a result, miners naturally compete against each other
to gain a higher fraction of the network’s hash rate in or-
der to maximize reward. In a race to capture the network’s
rewards, miners have developed increasingly sophisticated
solutions, culminating in the development of Bitcoin ASIC
accelerators [13]. A miner’s revenue is determined by the
accelerator’s hash rate (GHash/s); operating costs are de-
termined by its energy efficiency (GHash/J).

The mining algorithm is shown in Algorithm 1. In short,
mining is a search for the nonce value that results in a double
SHA-256 hash digest (Algorithm 2) value less than a given
threshold. The nonce is a 32-bit field within a 1024-bit block
header. In order to verify transactions at a steady rate,
this threshold varies over time as a function of difficulty
D(t). Difficulty is adjusted by the network regularly such
that a solution is expected to be found approximately every
10 minutes, regardless of the network’s collective hash rate.

By their very nature, hash functions are designed to be
non-invertible, so mining is performed by brute force, guess-
ing nonce values and comparing the hash output. This task
is perfectly parallel as multiple hashes may be computed at
once. It follows that one’s probability of finding a solution
is proportional to one’s hash rate. The first miner to find a
valid nonce broadcasts the value on the network for verifica-
tion and is rewarded with newly minted digital (bit)coins.

Algorithm 1 Mining Process

1: nonce← 0
2: while nonce < 232 do
3: threshold← ((216 − 1)� 208)/D(t)
4: digest← SHA-256(SHA-256(header))
5: if digest < threshold then
6: return nonce
7: else
8: nonce← nonce+ 1
9: end if

10: end while

Algorithm 2 presents a basic description of SHA-256. For
details on message padding, initial hash values H(0), and
constants Kj , see [12].

• The message M is divided into N 512-bit blocks
M (0),M (1), . . . ,M (N−1). Each of these blocks is fur-

ther subdivided into 16 32-bit wordsM
(i)
0 ,M

(i)
1 , . . . ,M

(i)
15 .

• The intermediate hash value H(i) is composed of 8 32-

bit words H
(i)
0 , H

(i)
1 , . . . , H

(i)
7 .

• Ch(x, y, z) ≡ (x ∧ y)⊕ (¬x ∧ z)
• Maj(x, y, z) ≡ (x ∧ y)⊕ (x ∧ z)⊕ (y ∧ z)

• Σ0(x) ≡ x≫ 2⊕ x≫ 13⊕ x≫ 22
• Σ1(x) ≡ x≫ 6⊕ x≫ 11⊕ x≫ 25
• σ0(x) ≡ x≫ 7⊕ x≫ 18⊕ x� 3
• σ1(x) ≡ x≫ 17⊕ x≫ 19⊕ x� 10

Algorithm 2 SHA-256

1: function SHA-256(M)
2: for i from 0 to N − 1 do
3: for j from 0 to 15 do

4: Wj = M
(i)
j

5: end for
6: for j from 16 to 63 do
7: Wj = σ1(Wj−2)+Wj−7 +σ0(Wj−15)+Wj−16

8: end for

9: for j from 0 to 63 do
10: t0 ← h+ Σ1(e) + Ch(e, f, g) +Kj +Wj

11: t1 ← Σ0(a) +Maj(a, b, c)
12: h← g; g ← f ; f ← e; e← d+ t1
13: d← c; c← b; b← a; a← t1 + t2

14: H
(i)
0 ← H

(i−1)
0 + a; H

(i)
1 ← H

(i−1)
1 + b

15: H
(i)
2 ← H

(i−1)
2 + c; H

(i)
3 ← H

(i−1)
3 + d

16: H
(i)
4 ← H

(i−1)
4 + e; H

(i)
5 ← H

(i−1)
5 + f

17: H
(i)
6 ← H

(i−1)
6 + g; H

(i)
7 ← H

(i−1)
7 + h

18: end for
19: end for
20: return H(N−1)

21: end function

2.2 Related Work
Although some work has been done to improve the per-

formance of SHA-256 ASICs in context of other applica-
tions [6] [10], no published research, to the best of our knowl-
edge, attempts to optimize ASICs for Bitcoin mining. The
most closely related work is by Courtois et al. [5] who ex-
plore mining optimizations from an algorithmic perspective.
Their central observation is that the first half of the block
header (shown in gray in Figure 1) does not change across
nonce iterations, so its hash may be precomputed. Since
this precomputation cost is amortized across 232 nonce iter-
ations, it halves the cost of the first SHA-256 round (shown
within the dashed line in Figure 1). Our paper is the first
work to explore hardware optimizations, specifically approx-
imation-based optimizations theorized by [8], unique to Bit-
coin mining2.

2.3 Baseline Hardware

2.3.1 Implementation
For our studies, we selected as baseline the SHA-256 ASIC

design outlined by Dadda et al. [6]. A summary of SHA-256
is provided in Algorithm 2. The hashing core in this design is
implemented as two parallel pipelines, the Compressor (Line
9 of Algorithm 2) and the Expander (Line 3 of Algorithm
2) shown in Figure 2. The logic functions Ch, Maj, Σ0, Σ1,
σ0, and σ1 in the figure are defined with Algorithm 2.

2A form of functional approximation was discussed in a re-
cent blog post by Sergio Lerner [8].

Figure 2: SHA-256 Pipeline Datapath

A
0

A
1

B

C

D

E

G

H

CSA

Maj

Ch

Σ
0

Σ
1

L
1

L
0

K
j

W
j

CPA

CSA

CSA CSA

CSA CSA

CSA

CSA

F

CPA

M
j
(i)

σ
1

σ
0

CSA

CPA

CSA

Expander

Compressor

A single iteration of the algorithm’s compression and ex-
pansion loops are performed each clock cycle. The expander

circuit receives a new 32-bit message chunk M
(i)
j every jth

cycle and feeds the compressor the expanded message through
register Wj . Conversely, the compressor receives a 32-bit
chunk of the expanded message and 32-bit constant Kj ev-
ery jth cycle and compresses these sequences. After 64 cy-
cles, the final 256-bit hash is given by A0 +A1, B, C, D, E,
F , G, H.

In order to reduce delay, most additions are performed
by carry-save adder (CSA) trees to avoid unnecessary carry
propagation. The ultimate carry propagation is performed
only once by some form of carry-propagate adder (CPA) (e.g.
ripple-carry adder (RCA) or carry-lookahead adder (CLA)).

2.3.2 Tradeoffs
In general, ASIC designers seek the implementation that

maximizes profit. A miner’s instantaneous profit p(t, f) at
time t and frequency f is a function of the mining yield Y (t)
(USD/GHash), hash rate H(f) (GHash/s), power consump-
tion P (f) (kW), and cost of electricity Ce(t) (USD/kWh).

p(t, f) = H(f) · Y (t)− P (f) · Ce(t)

60 · 60
(1)

As such, Bitcoin mining ASIC design presents a trade-
off between a design’s area A and delay 1/f . For fixed die

area, any reduction in area allows more hashing cores to be
allocated per die, and any reduction in delay implies a corre-
sponding increase in frequency and throughput. Hashing is
perfectly parallel so we expect H(f) ∝ f/A. Thus, designs
that minimize the delay-area product in order raise H(f)
should be expected to maximize profits.

3. MINING APPROXIMATION

3.1 Motivation
Given the delay-area trade-offs presented above, we pro-

pose approximation as a technique to reduce delay and area
of Bitcoin mining circuits, thereby increasing profits. Hash-
ing on a Bitcoin mining ASIC is embarrassingly parallel and
does not require any communication between cores; this lim-
its the propagation of hardware approximation errors. Fur-
thermore, the hash of all new blocks generated by the ASIC
are verified by the rest of the Bitcoin network; any invalid
solutions (outside the difficulty range) broadcast on the net-
work by the ASIC would be immediately rejected.

An approximate Bitcoin miner with high false positive
rate (invalid solutions3 that appear valid) could incur some
overheads (either broadcasting or verifying invalid solutions4).
Fortunately, Bitcoin miners have an inherently low false pos-
itive rate. The Bitcoin mining algorithm ensures that the
valid solution space (difficulty range) is a minute subset of
the 256-bit hash space. For a uniform error distribution,
the probability an approximate solution appears valid (falls
within the solution space) depends only on the difficulty
range, regardless of accuracy. Thus, the probability an in-
valid solution appears valid (a false positive) can at most
be the probability a valid solution is found by an accurate
miner. By design, the solution rate for the entire network
is roughly once every ten minutes (Section 2), so a single
approximate miner will find a valid solution at much larger
intervals, on average. Therefore, false positives must also
occur at intervals much larger than ten minutes. An ASIC
miner performs on the order of 109 Hashes/s, so the cost of a
single hash verification at intervals larger than ten minutes
is negligible.

The larger cost of approximation is false negatives (valid
solutions that appear invalid). These hashes represent missed
opportunities because a potentially sound solution5 may be
overlooked. These errors occur undetected and uncorrected;
thus, a miner’s effective hash rate is lowered.

3.2 Effect of Approximation on Profits
In the presence of approximation, the effective hash rate

changes. A fraction E(f) (error rate) of the computed hashes

will be incorrect, and a normalized reduction in area Â may
occur. We assume any reclaimed area is allocated towards
additional hashing cores. A miner’s effective hash rate H̃(f)
due to approximation is then given by6:

H̃(f) =
1− E(f)

Â
·H(f) (2)

3A solution is valid if its hash falls within the difficulty range.
4A false positive may be detected by double-checking on
reliable hardware locally or by the Bitcoin network itself.
5A solution is sound if it is valid and its hash is accurate.
6This expression is conservative; it is possible for a valid but
unsound solution to be a sound solution to another nonce.

Combining with Equation 1, these results suggest an es-
timate of profit in the face of approximation:

p̃(t, f) = H̃(f) · Y (t)− P̃ (f)
Ce(t)

60 · 60
(3)

3.3 Functional Approximation
To identify what component(s) in the hashing pipelines

should be approximated, we analyzed the critical paths in
the two hashing pipelines (Section 2.3.1). The critical path
of both pipelines are equal and drawn as dashed lines in Fig-
ure 2. The Expander’s delay is delay(σ0)+2 ·delay(CSA)+
delay(CPA), and the Compressor’s delay is delay(CPA) +
delay(Maj) + 2 · delay(CSA). Furthermore, we observe the
critical path through the carry-propagation logic of CPA
dominates the other terms. Thus, the carry-propagate adders
(CPA) are good candidates for approximation as proposed
by [8].

In general, adder designs provide a trade-off between area
and delay. For example, an n-bit ripple-carry adder (RCA)
propagates signals in O(n) time with O(n) area, but cer-
tain carry-lookahead adders (CLA) propagate in O(log2(n))
time with O(n log2(n)) area, reducing delay but increasing
area [9]. The parallel prefix form Kogge-Stone adder (KSA)
minimizes delay at the expense of area [7]. A 16-bit Kogge-
Stone parallel prefix graph is pictured in Figure 3. The
graph’s breadth is proportional to the adder’s width n, and
its depth (propagation delay) is O(log2 n); as a result, its
area grows as O(n log2(n)). Since hash rate is inversely pro-
portional to delay as well as area (Section 2.3.2), we con-
sidered all three adders — RCA, CLA, and KSA — as the
baseline adder implementations.

Approximate variants of these base adders retain their
trade-offs but reduce the delay and area by an additional
factor at the expense of inaccuracy. The basic principle
of approximate addition is that carry propagation chains
longer than a certain length are a rare event [14]. By allow-
ing certain carry propagation patterns to generate erroneous
sums, the logic may be simplified, reducing area and delay.
This approximation entails that certain valid mining solu-
tions will not be discoverable by an approximate miner.

However, only a small number of approximate adder vari-
ants will be interesting. Bitcoin mining is particularly sensi-
tive to errors in addition. The sensitivity derives from three
CPA modulo 32-bit additions each iteration, so there will be
64 · 3 = 192 additions in a single round of SHA-256, each
with error rate ECPA. The error rate of a single round in
the hashing core, therefore, is:

Ef = 1− (1− ECPA)192 (4)

If the Ef target is 2%, ECPA cannot be higher than 10−4.
This result limits the choices of approximate adders suitable
for mining.

We consider two approximate adder designs in this work.
In [15] rearranging carry-lookahead logic of a CLA adder is
proposed to construct a reconfigurable adder. This gracefully-
decaying adder (GDA) may be configured for a certain area-
delay tradeoff. We select the GDA(1,4) configuration with a
16-bit carry chain as it lowers the error rate to an acceptable
threshold.

We also consider an approximate KSA design [7]. Inspect-
ing the graph structure in Figure 3, the maximum length of
carry propagation k of an n-bit KSA (k = n for an accurate

Figure 3: KSA Parallel Prefix Graph (n=16)
0123456789101112131415

k=16

k=8

k=4

k=2

k=1

adder) doubles at each level of the graph. Thus, pruning
the lower levels reduces the length of carry propagation, de-
creasing area and delay. Inputs that generate more than
k consecutive carries7 will produce erroneous outputs. We
consider KSA16 and KSA8 implementations.

4. METHODOLOGY

4.1 Simulation
Various approximate and non-approximate versions of the

hashing core—one expander and one compressor pipeline per
core—were implemented using System Verilog and synthe-
sized using Synopsys Design Compiler [4] and a 65nm TSMC
GP cell library. Place and route was performed using Ca-
dence SoC Encounter [1]. The hashing cores differ in their
choice of the adder replacement for the CPAs in their data-
path.

4.1.1 Functional
An analytical derivation of the approximate adders’ error

rate ECPA is not straightforward [14]. Instead, Monte Carlo
simulations were performed with uniform random inputs (≈
1 million samples), a confidence interval of 95%, and 5%
relative error. The results are listed in Table 1.

4.1.2 Operational
In addition to simplifying logic through functional approx-

imation, approximation can also be performed by tolerating
occasional timing violations. Instead, a Better Than Worst-
Case (BTWC) operation can be allowed. We estimate the
operational error rate Eo(f) for each adder configuration
through simulation at variable frequency. At each discrete
frequency step, SDF files generated by place and route were
used to perform gate-level timing simulations in ModelSim-
Altera [3]. Monte Carlo simulations were performed as be-
fore. During simulation, the resulting hash vectors were
compared against the correct values to determine the error
rate at each frequency.

4.2 Profit Model
While it is possible to derive profits directly from our de-

signs in Table 2, the calculated profit values may not be cred-
ible since the designs neglect the optimizations that com-
mercial mining ASICs may perform. Instead, we select an
existing commercial ASIC for profit calculations. We choose
a Bitmain BM1385 [2] with hash rate of H0 = 38.8 GHash/s
and power consumption of P0 = 10.2 W at nominal fre-
quency and voltage. We assume that the ASIC is imple-
mented using a KSA32 design since KSA32 minimizes the
hashing pipeline’s delay-area product (Table 2). To deter-
mine how profits change between adder designs, we calculate

7We denote these adders as KSAk.

normalized changes to area, delay, and power with respect
to KSA32, using data from Table 2. We assume that the
same relative changes would occur to the Bitmain ASIC in
terms of area, delay, and power when its adders are changed.

For example, to predict the change in profits from adopt-
ing a GDA(1,4) design, we first calculate the normalized
changes to area, delay, and power between GDA(1,4) and
KSA32 based hashing core (Table 2). Next, we scale the
Bitmain ASIC’s area, delay, and power by these normal-
ized values to predict the modified Bitmain ASIC’s area,
delay, and power. Finally, profit is derived from these pre-
dicted values, the Bitcoin mining difficulty, exchange rate,
and price of electricity.

The error rate at each operating point is found through
simulation (Section 4.1). Each simulated SHA-256 round
has error rate Ei(f), the sum of functional and operational
error rates. Bitcoin requires two rounds for each nonce it-
eration; hence, we can extrapolate to calculate cumulative
error rate E(f), assuming the hash inputs and outputs to
be uniform random variables.

Ei(f) = Ef + Eo(f) E(f) = 1− [1− Ei(f)]2 (5)

The frequency of each design is swept above its nominal
value f0 while keeping voltage fixed. Hashing is completely
parallel, so the hash rate H(f) ∝ f . The design’s normal-

ized operating frequency is F̂ (f) = f/f0. Combining with
Equation 2, we expect the effective hash rate to be:

H̃(f) =

(
1− E(f)

Â

)
·H0 · F̂ (f) (6)

At 65nm with high duty cycle, dynamic power dominates
leakage power in the designs, so P (f) ∝ f , implying:

P̃ (f) = P0 · F̂ (f) (7)

Substituting these expressions into Equation 3, we deter-
mine p̃0(t0, f), the predicted profit at time t0 of the approx-
imate Bitmain ASIC.

5. RESULTS
We perform the synthesis and simulations discussed above

for each adder configuration. Table 1 lists the adders’ delay
and area. Each adder was inserted into the hashing core
pipelines in the CPA slots indicated in Figure 2. The re-
sulting hashing core area and delay are provided in Table
2. Approximate variants are highlighted in gray. Figure 4
shows the error rate-frequency characteristic Ei(f) of each
hashing core for various adders after simulating a full round
of SHA-256. The resulting frequency-profit relation is shown
in Figure 5.

There are several conclusions to be drawn from the re-
sults. First, the results show that approximation is feasible
in the context of Bitcoin mining since some approximate
adder choices raise profits with respect to their exact im-
plementation. For example, observing the frequency-error
characteristics of Figure 4, the hashing cores corresponding
to both approximate adders, GDA(1,4) and KSA16, have neg-
ligible error rates at nominal frequency. Also, their nominal
operating frequencies are higher than their non-approximate
counterparts, CLA and KSA32 respectively. Consequently,
Figure 5 shows that profits of both approximate adders at
nominal frequency are greater than that of the correspond-
ing accurate adders.

Figure 4: Frequency/Error Rate Trade-off for Cores

0.2 0.3 0.4 0.5 0.6 0.7

0

0.2

0.4

0.6

0.8

1

frequency (GHz)

er
ro

r
ra

te
(E

R
)

RCA

CLA

GDA(1,4)

KSA32

KSA16

Figure 5: Frequency/Profit Trade-off for Cores

0.2 0.3 0.4 0.5 0.6 0.7
−4

−2

0

2

4

6

8

·10−7

frequency (GHz)

p
ro

fi
t

(U
S
D
/
s)

RCA

CLA

GDA(1,4)

KSA32

KSA16

Second, the results show that approximation can increase
mining profits significantly. For example, KSA16 performs
significantly better than its non-approximate counterpart,
producing 15% greater profit at its nominal frequency. A
further increase in profit can be gained by operating the
design past its nominal frequency. As shown in Figure 5,
both KSA designs produce approximately 15% greater profit
compared to nominal at their peaks. This indicates KSA16

can raise profits by 30%, 15% from functional approximation
and 15% from operational approximation.

Third, while mining profit depends on both delay and area
of the hashing core, the results show that in a choice between
adders with low delay and low area, adders with low delay
should be chosen to maximize mining profits. For example,
KSA32 generates more profits than both RCA and CLA at
all frequency operating points in spite of the fact that the
error rate of both RCA and CLA rises more slowly when
pushed past nominal frequency. This is not surprising con-

Table 1: Adder Comparison
Adder delay (ns) area (µm2) delay · area (ns · µm2) P (mW) ECPA

RCA 4.13 1723 7116 0.170 NA
CLA 1.40 3453 4834 0.889 NA
GDA(1,4) 1.18 3016 3558 0.950 1.90× 10−5

KSA32 0.94 3863 3631 0.867 NA
KSA16 0.82 3491 2862 0.814 4.60× 10−5

KSA8 0.72 2920 2102 0.715 2.26× 10−2

Table 2: Hashing Core Comparison (Expander & Compressor Pipelines) for Different Adder Choices
Adder delay (ns) area (µm2) delay · area (ns · µm2) P (mW) Ef

RCA 4.78 44,058 210,0597 7.19 NA
CLA 2.63 47,097 123,865 12.1 NA
GDA(1,4) 2.32 46,641 108,207 13.8 7.27× 10−3
KSA32 1.86 48,801 90,769 17.33 NA
KSA16 1.73 47,829 82,744 19.0 8.79× 10−2

KSA8 1.58 46,299 73,152 20.4 1.00

sidering that while adders are on the critical path of the
hashing core, their contribution to the overall area of the
hashing core is small (Tables 1 and 2). This result indicates
designers should always choose parallel prefix form adders to
maximize profits. In particular, approximate adder designs
should mimic parallel prefix adder trade-offs.

Finally, many approximate designs are unsuitable for Bit-
coin mining. KSA8, in fact, leads to a hashing core error
rate of approximately 100% (Table 2). At such high error
rates, mining profits are negative (i.e. revenue does not even
offset electricity costs). Furthermore, many existing approx-
imate computing techniques which focus on mitigating the
magnitude of errors are not applicable in this scenario as
a correct hash solution must be completely accurate to be
useful to a miner.

6. CONCLUSION
We have demonstrated the potential for approximation

to improve the profits of Bitcoin mining. Mining is a par-
ticularly good candidate for approximation because hashes
are computed independently and in parallel, mitigating the
effect of errors, and a built-in verification system detects
any false positives. Furthermore, we have identified adders
as beneficial choices for approximation in hashing cores in
a mining ASIC. However, not all approximate adders yield
increases in profit. Profits are maximized by adders that
minimize delay at the expense of area, and approximate
adders should be chosen accordingly. Moreover, profits may
be improved by operating the hashing cores at Better Than
Worst-Case (BTWC) operating points, past their nominal
frequencies. We have showed that a Kogge-Stone adder us-
ing functional and operational approximation has the ability
to raise profits by 30%.

7. ACKNOWLEDGEMENTS
This work was partially supported by NSF and CFAR,

within STARnet, a Semiconductor Research Corporation
program sponsored by MARCO and DARPA.

8. REFERENCES
[1] Cadence SoC Encounter User’s Manual.

http://cadence.com/.

[2] List of Bitcoin mining ASICs.
https://en.bitcoin.it/wiki/List of Bitcoin mining ASICs/.
Accessed: November 24, 2015.

[3] ModelSim-Altera User’s Manual. https://www.altera.com/.

[4] Synopsys Design Compiler User’s Manual.
http://synopsys.com/.

[5] N. T. Courtois, M. Grajek, and R. Naik. The unreasonable
fundamental incertitudes behind bitcoin mining. CoRR,
abs/1310.7935, October 2013.

[6] L. Dadda, M. Macchetti, and J. Owen. The design of a high
speed ASIC unit for the hash function SHA-256 (384, 512).
In Proceedings of the Design, Automation and Test in
Europe Conference and Exhibition Designers’ Forum
(DATE), February 2004.

[7] D. Esposito, D. De Caro, E. Napoli, N. Petra, and
A. Strollo. Variable latency speculative Han-Carlson adder.
IEEE Transactions on Circuits and Systems I: Regular
Papers, 62(5):1353–1361, May 2015.

[8] S. D. Lerner. Faster SHA-256 ASICs using carry reduced
adders. https://bitslog.wordpress.com/2015/02/17/
faster-sha-256-asics-using-carry-reduced-adders/. Accessed:
March 26, 2016.

[9] S.-L. Lu. Speeding up processing with approximation
circuits. Computer, 37(3):67–73, Mar 2004.

[10] H. Michail, G. Athanasiou, A. Kritikakou, C. Goutis,
A. Gregoriades, and V. Papadopoulou. Ultra high speed
SHA-256 hashing cryptographic module for ipsec
hardware/software codesign. In Proceedings of the 2010
International Conference on Security and Cryptography
(SECRYPT), pages 1–5, July 2010.

[11] S. Nakamoto. Bitcoin: A peer-to-peer electronic cash
system. https://bitcoin.org/bitcoin.pdf. Accessed:
November 7, 2015.

[12] National Institute of Standards and Technology (NIST).
FIPS PUB 180-4 secure hash standard (SHS). August 2015.

[13] M. B. Taylor. Bitcoin and the age of bespoke silicon. In
Proceedings of the 2013 International Conference on
Compilers, Architectures and Synthesis for Embedded
Systems, CASES 2013, 2013.

[14] A. Verma, P. Brisk, and P. Ienne. Variable latency
speculative addition: A new paradigm for arithmetic circuit
design. In Design, Automation and Test in Europe, 2008.
DATE ’08, pages 1250–1255, March 2008.

[15] R. Ye, T. Wang, F. Yuan, R. Kumar, and Q. Xu. On
reconfiguration-oriented approximate adder design and its
application. In IEEE/ACM International Conference on
Computer-Aided Design (ICCAD), pages 48–54, Nov 2013.

