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ABSTRACT
Many emerging sensor applications are powered by energy har-
vesters that impose strict power constraints. These applications
often do not require high performance or energy efficiency. We
explore a technique for minimizing power of a microprocessor for
power constrained applications: bit serial computing. Bit serial
computing promises power benefits up to the data width for fully
bit serializable logic. We perform a best-effort bit serialization of
the openMSP430 microprocessor without making instruction set
architecture (ISA) modifications. Although it is very challenging
to serialize much of the logic in the microprocessor, we show
that power benefits of serialization exceed 42% when the serial
and parallel designs synthesized for their maximum operating
frequency are running at a low duty cycle. Benefits are expected
to be higher when ISA modifications are allowed.
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1. INTRODUCTION
Many emerging sensor applications are powered by energy

harvesters. Widespread examples of energy harvesting include
inductive coupling [7, 9] and solar cells [14, 2]. As long as an
energy harvester has access to its external power source (e.g., an
RFID is within range of a base station), the harvester effectively
acts as an infinite energy source during the application’s lifetime.
Unfortunately, energy harvesters provide very low wattages, on
the order of mili or even micro-watts per square centimeter [12,
14], and power delivered may vary greatly with time.

To cope with these constraints, a new paradigm of power-neutral
computing has been proposed [3]. Power-neutral computing aims
to match the system power consumption, rather than energy con-
sumption, to the power provided. Designing for power neutrality
obviates the need for energy storage devices which waste energy
through conversion inefficiencies and consume valuable area. On
the other hand, the system must tolerate intermittent loss of
power. Depending on the power delivery profile, a technique to
decrease power consumed can reduce the length of the powered off
periods. Since decreasing the power consumption can increase the
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duty cycle of the system, this class of techniques has the potential
to increase the throughput over the lifetime of the system even
at the expense of increased energy per operation and/or decreased
performance.

In addition, previous work has shown that existing low-power
processors over-perform on many sensor benchmarks [5]. Even
after the processor was made energy optimal, it continued to over-
perform. Coupled with the previously discussed opportunity for
increasing throughput at the expense of energy and performance,
this over-performance implies an opportunity for area and power
reduction. While low voltage operation can reduce processor
power at the expense of performance, reliability concerns limit
the degree of voltage reduction [6].

We consider a technique complementary to low voltage oper-
ation: bit serial computing. Bit serial computing is defined as
computing on a single bit of a datum in each cycle. For a perfectly
serializable circuit with 16-bit data width, bit serialization provides
16× power reduction in exchange for up to 16× performance degra-
dation, which may be acceptable for many sensor benchmarks [5].
Actual performance degradation may be much smaller when
considering the decreased critical path length of the serial circuit.
Similarly, actual area and power benefits may be much smaller,
especially for a microprocessor, since not all logic is serializable.

Bit serial functional units have been considered for microproces-
sors in the context of high-throughput computing [11, 4, 1]. These
works exploit the super-linear1 increase in functionality per unit
area or power with decreasing bit width. Similarly, Khanna and
Calhoun studied serial adders for ultra-low-power [10]. They found
that a serial adder is more energy efficient than a parallel adder
given low supply voltage and certain performance constraints.
In this paper, we present the first study of bit serialization of a
microprocessor in the context of ultra-low-power applications. We
investigate how much of the maximum benefits are possible in the
context of microprocessors without requiring a change in the ISA.
We explore components common to most microprocessors and
determine the characteristics that make logic serializable. These
characteristics are not limited to the context of microprocessors
but are widely applicable to ASIC and other designs as well.

The rest of this paper is organized as follows. In Sections 2
and 3, we describe issues faced in microprocessor serialization
and how they limit area savings to 38%. In Section 4, we discuss
how we evaluated our design and found that power benefits were
limited to 42%. We conclude in Sections 5 and 6 with a discussion
of future work and summary of the results.

2. BIT SERIALIZABILITY OF A MICRO-
PROCESSOR

1Such benefits area only possible for certain components (e.g.,
adders)



Figure 1: Components with decreasing serializability from top to bottom

Microprocessors support a wide variety of instructions resulting
in complex data path and control logic that have varying degrees
of serializability. For our work, we define combinational logic to
be perfectly bit serializable if the logic corresponding to each bit
position is identical and independent; less similarity and indepen-
dence mean lower serializability. Below we discuss four examples
of logic found in a common microprocessor [8] that have different
degrees of bit serializability: one perfectly serializable, one with
identical logic but dependence between bits, one with neither
identical logic nor independence between bits, and one with the
maximum possible dependence between bits (every output bit
depends on all input bits).

• The first example (Figure 1(a)) is a bit-wise AND computation.
This computation is common in microprocessors to support,
among other things, a bitwise AND instruction in the ISA2.
Computation on each bit position is identical and independent,
requiring only a single AND gate. The computation can be
perfectly serialized using a single AND gate and delivering bits
in the operands serially.

• A second example is a ripple-carry adder (Figure 1(b)) sup-
porting, among other things, an ADD instruction in the ISA3.
The logic operating on each bit, a full adder, is identical, but
is not independent due to the carry chain. This introduces a
savings-limiting complication: a flip flop must be included in
the serial implementation to account for the dependence. As a

2The corresponding instruction for MSP430 is AND.
3The corresponding instructions in MSP430 are ADD, ADDC,
SUB, and SUBC.

result, serializing the adder saves only half the area saved from
serializing AND.

• A third example is binary coded decimal addition (Figure 1(c)).
This computation is commonly supported in microcontrollers
since they are often used in applications that involve displaying
numbers4. Although the per-bit logic in this computation is
neither identical nor independent, which severely limits savings,
there is still some common logic in the bit-wise additions being
performed. In order to serialize, there must be an intermediate
shift register which holds a decimal digit until a comparison
of the decimal digit to the value ten is complete. After this
comparison is complete, six is added serially to the decimal
digit if the decimal digit was greater than ten. Area savings
of serializing the binary coded decimal adder are about half
of the area savings of serializing the binary adder.

• The final example is a 2-to-4 decoder (Figure 1(d)). A 2-to-4
decoder is used whenever a one-hot bit-vector needs to be
generated (e.g., while using a 4-to-1 multiplexer at the output
of a register file with four physical registers). Each output bit is
an AND of both inputs to the decoder. Since every output bit
depends on every input bit, there are two possible serializations
of the decoder, one with serial output and another with serial
input. We show a serial output implementation in Figure 1(d)
since it is more efficient than the serial input counterpart due
to the shared AND gate. The two XOR gates and one AND
gate in this serial implementation consume roughly the same
area as the four AND gates in the parallel design. As such, no

4The corresponding instruction in MSP430 is DADD.



Figure 2: Area breakdowns and savings by Verilog module

area savings are possible.

The above examples show that different logic components in a
microprocessor have different degrees of bit serializability. In fact,
some logic in microprocessors is unserializable. For example mem-
ory cells holding the processor’s state (e.g., physical registers and
state machines) cannot be shared without destroying the data they
store. There are other challenges as well. Consider the memory in-
terface. In order for all bits of an address or datum to be available
to memory in the same cycle, a costly shift register is required for
deserialization. In general, repeated serialization and deserializa-
tion that is needed due to mismatched serializability of different
microprocessor components will limit area savings even further.

As such, a microprocessor level study is needed to ascertain ben-
efits from bit serialization in the context of ultra-low-power com-
puting. In this paper, we perform that study for the openMSP430
microprocessor without making any modifications to the ISA. We
discuss in Section 5 how ISA changes may allow further benefits.

3. BIT SERIALIZING MSP430

3.1 Base Architecture
We studied the open source Verilog implementation of Texas

Instruments’ MSP430 micro-controller, openMSP430. An area
breakdown by Verilog module is shown in Figure 2(a). open-
MSP430 consists of three pipeline stages. The first two stages are
included in a single Verilog module: front-end. The first pipeline
stage fetches the instruction. The second stage decodes the op
code, jump condition, and source and destination addressing
modes (in memory operands are allowed). The front-end module
also includes the state machines controlling the entire pipeline.

The source and destination register decoders operate in the
second stage, but are included in the front-end module. The rest
of the logic in the second stage is in the execution unit module.
The second stage fetches the operands, does the computation,
and writes the result. In the next two subsections, we will discuss
serializing the front-end and execution unit modules.

There were a few modules in the RTL that we did not serialize.
We did not serialize the clock tree because there are no data
nets to serialize. We did not serialize the memory backbone,
which arbitrates memory requests between the front-end and the
execution unit, because serialization and deserialization of data
associated with memory requests is done in the front-end and
execution unit modules separately. Finally, we did not serialize the

special function register because the result would not significantly
impact the total area.

3.2 Bit Serializing the Front-end
Most of the front-end has a low degree of serializability since

dependence between bits is common (e.g., decode) and much of
the logic saves state (e.g., state machines). One opportunity for
serialization is in processing instruction operands fetched from
instruction memory or provided by a constant generator5. Area
savings come from serializing the multiplexers that select between
these values and output to the execution unit. Serializing the out-
put of these multiplexers also increases the impact of serialization
on the execution unit since no parallel-to-serial conversion of the
output is required.

To exploit the above opportunity, a cycle counter is required
to denote the bit-position corresponding to the current cycle of
serial computation. This counter is used to put a lower bound of
sixteen cycles on the time spent in each state, allowing for sixteen
cycle serial operations. It is also used throughout the execution
unit (e.g., to tell adder to disregard saved carry on zeroeth cycle).
Unfortunately, the cost of this additional logic outweighs the area
benefit of the serialization resulting in a 1.5% area increase shown
in Figure 2(d).

3.3 Bit Serializing the Execution Unit

3.3.1 Register File
The MSP430 register file consists of sixteen registers: four func-

tion specific registers (R0-R3) and 12 general purpose (R4-R15).
In order to support serial execution, we modified R0, R1, R3, and
the general purpose registers by making them rotate a single bit per
cycle from most significant to least significant bit. Rotation was
enabled using the clock gating signal supported by openMSP430.
Rotation allows serial access to these registers (read at the least
significant bit and written at the most significant bit) using serial
input and output multiplexers. Serializing the adder in the register
auto-increment module also resulted in large area savings.

The only register not made to rotate was the architecturally vis-
ible status register, R2, because multiple status bits are generated
in the last cycle of serial execution and thus must be saved in a

5The constant generator outputs one of a small set of 16 bit con-
stants based on a selector input. This way, instructions can encode
the much smaller selector input instead of the entire constant.



Figure 3:Area breakdown of execution unit by Verilog module

Figure 4: Relative area decrease of Verilog modules in
execution unit

single cycle; as in the baseline, the status bits have dedicated read
and write ports. Consumption of these bits requires bit-parallel
write, which is costly to support for a rotating register (50% area
overhead). Since the register is not rotating, special interfaces to
the serial input and output of the register file are required. When
write to R2 is enabled, we change the value of a given bit if and
only if the cycle counter’s value corresponds to that bit’s position
(i.e., a multiplexer is placed on each bit with a comparison to the
cycle counter as the selector). When read from R2 is enabled, we
select the bit corresponding to the current cycle using a 16-to-1
multiplexer with the cycle counter as the selector.

All the registers that we made rotate decreased in area except
R3. Since R3 is the only register that does not support an au-
toincrement function, there is no multiplexer on the input of the
baseline implementation. Serialization of the input multiplexer
accounts for the area savings in the other registers.

Figure 2(b) shows the area breakdown of the register file. The
largest module is the collection of all general purpose registers,
which saw a 20% area decrease (see Figure 2(e)) due to seri-
alization of the input. The second largest module, the output
multiplexer, saw the largest relative area decrease due to serializa-
tion of the output. For these reasons and the size of the register
file module relative to the rest of the processor (Figure 2(a)),
serialization of the register file contributes the largest absolute
area savings of any module in the design.

3.3.2 Arithmetic Logic Unit
Figure 2(f) shows area savings for different modules in the ALU.

All logical operations (AND, OR, XOR) saw 16× area savings
from serialization since they are perfectly serializable (Section 2).
The binary addition (ADD) and binary coded decimal additions
(DADD) save 8× and 3× area, respectively, since the computa-

Benchmark Description
rle Run-length encoded compressor
tea8 TEA encryption algorithm
div Unsigned integer division
inSort In-place insertion sort
binSearch Binary search
intAVG Signed integer average
intFilt 4-tap signed FIR filter

Table 1: Benchmarks evaluated (subset of Table I in [5])

tions on bits are not independent and, in the case of binary coded
decimal addition, not identical.

The three remaining ALU operations are sign extend (SXT),
byte swap (SWPB), and right shift by one (shift). We implemented
serial byte swap by rotating the destination register for eight
cycles and disabling rotation for the next eight cycles. Serial right
shift requires a different approach since arithmetic shift is required.
Execution of arithmetic shift requires copying the most significant
bit to the second most significant place. We do this by waiting for
the most significant bit to be available (in the sixteenth cycle of
execution) and then waiting for fifteen more cycles until the second
most significant place can be written. While this does result in a
significant latency increase over the alternative of adding support
for the bit copy to the register file, it requires much less area.

All ALU operations send serial streams to a multiplexer at
the output of the ALU. This multiplexer is the largest module
in the ALU (Figure 2(c)). It is also perfectly serializable and so
contributed the highest absolute area savings for the ALU. From
Figure 2(f), we see that the ALU has a high average serializability
and thus contributes a large percentage of the area decrease even
though it is only the second largest module in the execution unit.

3.3.3 Supporting Logic
A final opportunity for serialization is in the source and des-

tination operand multiplexers. Since multiplexers are perfectly
serializable, one would expect 16× area savings. Figure 2(f) shows
that this is not the case for the destination operand multiplexer. In
the parallel RTL, two of the inputs to the multiplexer are constants.
This allows a design tool to decrease the area of the multiplexer
beyond what would be possible if all inputs were dynamic. During
serialization, any constant bit-parallel values must be converted
to bit serial streams. Therefore, none of the multiplexer inputs
in the serial design are constant, and the optimization that was
available to the parallel design is not available to the serial design.

In order to meet ISA and memory interface requirements, bit se-
rial requires additional logic. We added an intra-instruction carry
bit, which is required to perform additions without clobbering
the carry bit in the status register (e.g., computing the memory
address of an operand to an add-with-carry instruction). To
interface the serial output of the ALU with the parallel memory
interface, serial-to-parallel glue logic is required. We added a shift
register to deserialize the memory address calculated by the ALU.
Finally, the serial implementation also requires parallel-to-serial
glue logic on the memory interface. We used a 16-bit register to
implement the interface.

3.3.4 Summary
A much smaller portion of the execution unit is dedicated to

control of the processor than the front-end. Figure 4 shows that
all Verilog modules in the execution unit saw an area decrease;
the relative size of each module is shown in Figure 3.

4. EVALUATION



Figure 5: Bit serial has lower power at low sample rates

4.1 Methodology
To synthesize our designs, we used Synopsys Design Compiler

with a TSMC 65nm cell library characterized for different op-
erating voltages from 400 mV to 1200 mV. Since our technique
targets low operating frequencies, we use high-Vt cells in order to
minimize power consumption. We do not evaluate with other cell
types because the bit-parallel design consumes less power than
the bit-serial design at high frequencies even with the limitation
on cell type6. We simulated operation of the resulting gate-level
netlists using Modelsim. Our test bench included a functional
model of a zero-wait-state memory whose power and area we did
not evaluate. To measure power consumption of the core given
the simulation results, we used Synopsys PrimeTime.

4.2 Results
To evaluate the power and performance impact of bit serial-

ization of openMSP430, we performed gate-level simulations of
the sensor benchmarks listed in Table 1. Prior work has shown
current embedded processors heavily over-perform for these bench-
marks [5]. These benchmarks also represent application settings
where power is constrained [12]. Figure 5 shows the power of
both the serial and parallel implementations operating at their
maximum frequencies (313 MHz and 263 MHz respectively). The
designs are clock gated when idle. The sample rate on the x-axis
is normalized to the maximum sample rate that can be processed
by the bit serial design. The results show that the bit serial design
uses up to 38% less power than the bit parallel design for low
sample rates. This is due to the fact that static power constitutes
a large fraction of overall power at low sampling rates; the serial
version has lower static power due to lower area. The results also
show that the power benefits of a serial design at a given sample
rate increase as voltage is lowered. This is because the static
power consumes a higher fraction of overall power at low voltages.

Figure 6(a) shows that the benefits of serial design continue
even when the serial and parallel designs are synthesized for every
sample rate individually instead of only the maximum. For the
parallel design, the design tool takes advantage of the relaxation of
the frequency constraint by decreasing the area of the design. This
decreases the leakage power, moving the serial-parallel crossover
to lower sample rates and decreasing the maximum power savings
to 27% at 400 mV.

6This also assumes that the bit-parallel design has more
unconstrained paths and would therefore benefit more from
variable Vt than the bit-serial design.

Parallel Area % Serial Area %
Sequential 39.9 55.3
Combinational 59.4 44.2
Buffer 0.689 0.505

Table 2: Composition of designs

Leakage/Area Leakage/Area Ratio
(400 mV) (1200 mV)

Sequential 0.338 7.67 22.7
Combinational 0.441 7.54 17.1
Buffer 0.779 15.2 19.5

Table 3: Different types of standard cells have different
leakage characteristics

400 mV 700 mV 1200 mV
Parallel (MHz) 18.9 182 263
Parallel (MIPS) 8.58 82.7 120
Serial (MHz) 25.6 263 313
Serial (MIPS) 0.580 5.24 7.27
Degradation 14.8x 14.4x 16.5x

Table 4: Performance Degradation

Power benefits from bit serialization tend to be higher than the
area benefits. For example, when synthesized at the maximum
operating frequency, area savings from bit serialization are 38%,
but maximum power savings are 42%. This discrepancy is due
to the fact that the gate-level netlist corresponding to the serial
design has a higher percentage of sequential standard cells than
the parallel design (Table 2). Combinational cells leak more per
unit area on average than sequential cells (Table 3).

Figure 6(b) shows the power consumed by bit serial design
relative to the power consumed by bit-parallel for different bench-
marks. For low sample rates, where our design is most useful,
power savings are approximately equal to the decrease in leakage
of the design and so are benchmark independent. For high sample
rates, there is little variation in the serial power consumption
because of the simplicity of the design. The small increase in rle
relative to the other benchmarks is due to a relatively high percent-
age of instructions with in memory operands. These instructions
go through extra states during execution for operand fetch.

The leakage power of the bit serial design decreases faster with
voltage than the bit-parallel design, resulting in greater power sav-
ings at lower voltages. Figure 6(c) shows this trend. This is not sur-
prising since (a) leakage per area decreases faster with voltage for
sequential area than combinational (Table 3), and (b) the serial de-
sign has a higher percentage of sequential standard cells (Table 2).

Finally, bit serialization resulted in a performance degradation
of 14.4−16.5× (Table 4) when compared to the corresponding
parallel designs. However, the absolute performance of the serial
designs is between 584 KIPS and 7.24 MIPS. This performance
is more than sufficient for a large class of sensor applications [5].

5. DISCUSSION AND FUTURE WORK
Area savings due to bit serialization could be as high as the

data width. However, our evaluations show that such savings are
impossible to achieve with an existing ISA since a large percent-
age of the logic is poorly serializable. Since the logic dedicated
to control is determined by the ISA, an ISA designed for bit
serializability could promote greater serialization.



Figure 6: Secondary evaluations with (a)resynthesis, (b)benchmarks, and (c)voltage

As a proof-of-concept, we created a bit serial implementation
of an instructional LC-3b core [13]. The LC-3b ISA includes only
eight logical registers and much simpler decode due to fewer oper-
ations and addressing modes supported. In serializing this design,
we saw a 27.5% area decrease when synthesizing for low sample
rates (up from 21% area decrease for openMSP430). This shows
the feasibility of getting greater benefits from bit serialization
when ISA modifications are allowed. Our future work includes
designing an ISA amenable to bit serialization and a bit serial
processor from the ground up for emerging sensor applications.

As first mentioned in Section 1, a technique that decreases
power consumed by an energy harvesting system can increase
throughput even if that technique increases energy or decreases
performance. Therefore bit-serialization can increase the through-
put of performance constrained energy harvesting applications
depending on the power-profile. Future work includes evaluating
power-profiles of different energy harvesting devices in order to
measure the throughput benefit of bit-serialization.

Future work also includes evaluating contexts where a greater
percentage of logic is highly serializable without architectural
changes. For example, a GPGPU core executes SIMD instructions
and therefore has a much higher percentage of highly serializable
data processing logic than theMSP430. Another example is a hard-
ware accelerator. Since accelerators are dedicated to a single task,
they should have a smaller percentage of logic dedicated to control,
which we found difficult to serialize. In addition to decreasing area
and power in these contexts, we will explore increasing throughput
using the increased throughput per area of serial computation.

6. CONCLUSION
This work performs the first exploration of microprocessor bit se-

rialization for ultra-low-power. We find that for energy harvesting
sensors operating at low sample rates, bit serialization can decrease
power by up to 42% relative to the bit-parallel implementation.
Power savings are limited by the large fraction of the processor
that is unserializable. The unserializability is mostly due to saving
the processor state or implementing complex control logic. The
impact of both control and state saving logic can be decreased
by decreasing their size relative to the rest of the processor.
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