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Abstract

Future CMPs will combine many simple cores with deep

cache hierarchies. With more cores, cache resources per

core are fewer, and must be shared carefully to avoid poor

utilization due to conflicts and pollution. Explicit motion of

data in these architectures, such as message passing, can

provide hints about program behavior that can be used to

hide latency and improve cache behavior. However, to make

these models attractive, synchronization overhead and data

copying must also be offloaded from the processors.

In this paper, we describe a Message Orchestration and

Performance Enhancement Device (MOPED) that provides

hardware mechanisms to support state-of-the-art message

passing protocols such as MPI. MOPED extends the per-

processor cache controllers and coherence protocol to sup-

port message synchronization and management in hard-

ware, to transfer message data efficiently without interme-

diate buffer copies, and to place useful data in caches in a

timely manner. MOPED thus allows full overlap between

communication and computation on the cores.

We extended a 16-core full-system simulator based on

Simics and FeS2. MOPED interacts with the directory con-

trollers to orchestrate message data. We evaluated ben-

efits to performance and coherence traffic by integrating

MOPED into the MPICH runtime. Relative to unmodified

MPI execution, MOPED reduces execution time of real ap-

plications (NAS Parallel Benchmarks) by 17-45% and of

communication microbenchmarks (Intel’s IMB) by 76-94%.

Off-chip memory misses are reduced by 43-88% for appli-

cations and by 75-100% for microbenchmarks.

1. Introduction

The challenge of effectively programming chip multi-

processors (CMPs) has received significant attention from

both academia and industry. Most of these chips leverage

manufacturers’ understanding of hardware-coherent sym-

metric multiprocessor (SMP) architectures to provide sim-

ilar support. Most CMPs today have small private L1 or

L2 caches but share a large last-level cache that is kept co-

herent with all L1 caches. As the number of cores on chip

increases, memory resources per core decrease, making it

critical to design and program future CMPs to share mem-

ory efficiently. For CMPs to continue to scale, applications

must be able to take advantage of parallel execution, and

data must be moved efficiently amongst the cores.

A recent study [3] reported that desktop software is not

meeting this challenge: although CMPs have dominated

the desktop market for several years, evidence suggests that

even codes designed to be parallel rarely make use of more

than a few cores simultaneously.

Heterogeneous cores offer one answer to this problem:

sections of an existing code base can be rewritten for ex-

ecution on a many-core accelerator such as a GPU, then

wrapped with additional code to move data between the

CPUs and the accelerator. Accelerator memory models are

typically non-coherent, and the heterogeneity in hardware

today implies a similar heterogeneity in memory models. In

such an environment, partitioning code and managing data

movement efficiently can be major challenges, and recent

work has explored convergence and integration of the two

memory models to simplify code migration [12] and pave

the way for more parallel applications.

An alternative hybrid strategy is to retain homogeneous

cores, but to allow the programmer to enhance performance

through selective use of explicit message passing. Mes-

sage passing has dominated high-performance applications

for decades, in large part because it enables programmers

to specify data motion explicitly. In a CMP, the chip can

use this information to move data more efficiently than is

possible when the information must be speculatively de-

duced from individual operations, as is often the case with

shared memory codes. As illustrated by Figure 1, threads
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Figure 1. Illustration of shared memory (left) and mes-

sage passing (right) models on a CMP.

using a shared memory programming share a single ad-

dress space. Each thread can access the objects in the mem-

ory without notifying other threads, and coherence is sup-

ported by hardware. Communication occurs through syn-

chronization primitives targeting a common object, such as

a lock. Hardware often resorts to moving data from cache to

cache on demand. In contrast, processes in message pass-

ing model typically use distinct address spaces. Commu-

nication then occurs by sending data via shared buffers in

memory mapped into multiple address spaces. To lever-

age explicit communication, substantial previous work in

the context of servers and high-performance computing has

examined extension of cache coherence mechanisms to bet-

ter support message passing, but few of the hardware mech-

anisms have been incorporated into today’s CMPs.

In this paper, we explore this approach in the context

of CMPs, developing a Message Orchestration and Perfor-

mance Enhancement Device (MOPED) that offloads mes-

sage synchronization and data copying from the cores and

reduces message latency and coherence traffic through ex-

tensions to a directory-based MOESI protocol. MOPED

provides support for general sender-receiver synchroniza-

tion and data transfer within and across address spaces on

a CMP. The MOPED design incorporates support for virtu-

alization, allowing MOPEDs to be used simultaneously by

many parallel applications. We evaluate MOPED through

full-system simulation of a range of message passing bench-

mark codes on a 16-way CMP, explore the impact of several

coherence extensions, and provide insight on the value and

cost of the proposed coherence extensions.

The remainder of the paper is organized as follows. The

next section reviews previous work on optimization of ex-

plicit communication. Section 3 illustrates sources of over-

head in a widely-used message passing implementation for

CMPs. Section 4 describes the basic MOPED design and

implementation and estimates hardware complexity. Sec-

tion 4.5 provides details of our coherence extensions. Sec-

tion 5 describes our simulation infrastructure and the bench-

marks we used to evaluate MOPED. Section 6 reports re-

sults and provides discussion, and Section 7 concludes.

2. Background and Related Work

Historically, message passing developed on distributed

memory machines with separate operating system (OS) in-

stances on each processor. Even when hardware coherence

is available, models retain the use of private address spaces

for each process both for portability reasons as well as to

protect against asynchronous access to private data.

A large body of research work exists focusing on the

problem of optimizing message passing and remote proce-

dure calls on symmetric multiprocessors (SMPs) (e.g., [2]),

and particularly on how to transfer data efficiently on hard-

ware coherent shared memory. The primary strategies for

achieving this aim are to reduce the number of copy oper-

ations, to transform processor overhead into latency by of-

floading work, and to hide latency through intelligent syn-

chronization and/or adaptive cache policies.

Software-based message passing requires that processors

perform all copy operations. Hardware assistance for mov-

ing message data was common in the era of massively par-

allel processors (MPPs) such as the Meiko CS-2, and is still

used in networks based on Myrinet and Infiniband. One of

the difficulties with offloading copy operations from proces-

sors to DMA engines is the need to support virtual memory

(address translation). The microprocessor industry is only

now standardizing support for generic devices. The poten-

tial for a processor-controlled translation unit for a network

interface card (NIC) was explored in [18]. The processor

handled page fault requests via interrupts and removed en-

tries as necessary from the NIC memory as necessary. Some

commercial systems, such as the IBM Cell processor, in-

clude DMA engines designed along similar lines for use

with scratchpad memories [10]. Use of additional hard-

ware thread contexts (as with Simultaneous Multithreaded,

or SMT) avoids the translation issues but can interfere with

the operation of the main thread of computation.

A comparison of mechanisms for shared memory mes-

sages appeared in [4]. As already mentioned, the most basic

mechanism is a shared memory buffer, but even this method

allows a range of queuing disciplines. Simplistic point-

to-point queues are easy to implement but scale poorly.

Support for one-sided communication (active messages) on

such machines using lock-free, many-to-one queue algo-

rithms was explored in [15]. The basic shared memory algo-

rithms for MPI appeared around the same time [6], but the

best current implementation uses lock-free algorithms such

as MPICH’s Nemesis device [4]. We use shared buffers as

the baseline model when evaluating MOPED.

A second approach to message passing is to trap into the

kernel, which can manipulate data in both address spaces

and can thus copy the data directly. This approach can make

use of ptrace or Unix sockets, but is most effectively imple-

mented as a kernel module, which reduces the number of

copies required but is typically too expensive for short mes-
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Figure 2. MPI rendezvous protocol.

sages. Page remapping is also theoretically possible, but

message buffers are not generally page-aligned, and addi-

tional copies incur too much overhead.

Tailoring cache consistency protocols according to the

type of data object being accessed was introduced by

Munin [1], and numerous papers have explored application-

specific protocols as well as ideas such as cache injection

to reduce access latency for message passing. For exam-

ple, one CMP design combines support for shared memory

with support for streaming applications [14] uses a DMA

engine to deliver data into a 24 kB scratchpad memory that

in shared memory mode extends the L1 data cache.

Several recent papers have studied message passing in

the context of CMPs. Some argue that CMPs should sup-

port only message passing [13], and Intel developed the

Rock Creek architecture [7] to enable exploration of this

idea. Although we evaluate MOPED’s potential using MPI

benchmarks, MOPED instead focuses on the potential for

using explicit communication to enhance application per-

formance without completely rewriting the code. A recent

workshop paper [5] provided a high-level description of a

hardware mechanism for optimizing message passing. We

provide a more detailed discussion of practical implementa-

tion issues such as virtualization and hardware overhead as

well as support for offloading message synchronization and

address translation. Our MOPED reduces copy operations,

reduces cache traffic, and frees processors from nearly all

communication overhead. We also discuss mechanisms for

optimizing control of moving data into and out of caches

to benefit more general parallel programs. For compari-

son, the advanced DMA engine in the IBM Cell moves data

between scratchpad memories near the cores. Rather than

being managed dynamically and degrading gracefully with

increased message length, as is MOPED, space must be re-

served in these memories before message data are sent and

remains reserved until the data are consumed.

Another study focused on accelerating data motion for

staged execution models in the context of heterogeneous

CMPs [17]. In a staged execution model, data flows from

one process to the next in a pipelined manner. The paper

describes mechanisms to identify these flows and extends

the instruction set to allow each stage to specify the data

to be moved. MOPED focuses on explicit communication

rather than on specific producer-consumer models, which

are more amenable to queuing.

3. Overhead analysis on CMPs

As mentioned earlier, implementations of the Message

Passing Interface (MPI) standard typically leverage multi-

ple address spaces both for portability and for inter-process

protection of private data. In this section, we examine the

path taken by a message passed from one address space to

another in a hardware-coherent shared memory system and

discuss sources of overhead incurred in this process.

Figure 2 illustrates the basic MPI protocol for sending a

large message from one address space to another. Senders

(P1) and receivers (P2) synchronize by exchanging control

packets before copying message data via the shared mem-

ory region. This rendezvous avoids the deadlock scenario

in which a large message fills the shared buffer and blocks

transfer of a subsequent message that must be received be-

fore the first. The diagram illustrates the scenario in which

the receiver arrives first. On entering MPI Send, the send-

ing process transmits a request-to-send control packet, and,

in this case, receives an immediate reply. The sender then

proceeds to copy the data from the send buffer into the

shared memory region in 16 kB chunks. A blocking send

returns only when all data has been copied into the shared

memory region. A non-blocking send can compute during

the time spent waiting for the initial rendezvous, but the pro-

cessor itself must perform the memory copy. As illustrated

by the figure, both synchronization and message data copy-

ing require CPU cycles, which increase the critical path of

the program. As the number of cores increases, more com-

munication between cores will be required.

As already mentioned, we chose the most widely-used

message passing infrastructure, MPICH [11], as a base-

line against which to compare MOPED. The MPICH shared

buffer message passing mechanism (SHM) maps a shared-

memory region into each MPI process’ address space in

order to transfer messages. Figure 3 shows a more de-

tailed hardware view of message passing in our baseline

system. Sending a message requires a dual-copy opera-

tion. The sender process copies data from the message’s

send buffer (Step 1) into the shared buffer (Step 2), bring-

ing both buffers into the executing processor’s caches. The

receiver process then brings the shared buffer into its cache

and copies the data from the shared buffer into the mes-

sage’s receive buffer. Step 3 of the figure shows the motion

of cache lines for the shared buffer, and Step 4 shows write-
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Figure 3. Dual copy message passing via shared mem-

ory buffers for original MPICH.

back of the receive buffer. For a long message, the shared

buffer lines may bounce several times between sender and

receiver before the message transfer completes. The shared

buffer is typically fairly large (256 kB) to avoid its becom-

ing a bottleneck, thus it is usually evicted from the receiver’s

L1 (Step 5) before the sender reuses it (Step 6).

Several sources of overhead become clear from this

overview. Software overheads arise from synchronization

and from fragmenting the message into 16 kB packets. Mes-

sages exhibit a producer-consumer relationship, and most

coherence protocols do not provide efficient mechanisms

for managing them. All three buffers are brought into the L1

and L2 caches from memory, generating substantial cache

traffic. Computation data are evicted from the caches due

to cache pollution by these buffers. The shared buffers are

significant, as they are large and allocated separately for

each pair of communicating processes. Hardware coherent

architectures provide coherence for all data, and message

data thus suffers increased latency, cache traffic, and cache

misses [4], which are obstacles to application performance.

4. MOPED Design

In this section, we discuss the design of a Mes-

sage Orchestration and Performance Enhancement Device

(MOPED). MOPED consists of simple extensions to each

core’s L2 cache controller, enabling message synchroniza-

tion and transfer to proceed in parallel on all MOPEDs.

With MOPED, message passing requires only a few loads

and stores to deliver basic message information and to poll

for completion. MOPED synchronizes message senders

and receivers independently, then handles data transfer

by interacting with the directory controllers and the lo-

cal caches, leaving processors free to perform other work.

MOPED moves data directly from the send buffer to the re-

ceive buffer, eliminating overheads associated with shared

buffers. Use of MOPED requires changes to message pass-

ing library code, which we illustrate below. Application
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Figure 4. Zero-copy message transfer with MOPED.

code that makes use of message passing libraries or run-

times need not be changed to use MOPED.

Message data transfer using MOPED with MPICH ap-

pears in Figure 4. The MOPED associated with the receiver

process begins (Step 1) by requesting a copy of send buffer

cache lines from the directory controller. These lines are

usually in the cache associated with the sender process, but

may also be in memory. In Step 2, a copy is delivered to

the receiving MOPED, but the lines are not placed in the

associated cache. Instead, MOPED writes the data directly

into the receive buffer (Step 3), which is brought into the

local cache since the receiver process is likely to access the

receive buffer after the message has arrived.

4.1. MOPED software and virtualization

MOPED is designed to interact directly with user-level

applications and must thus support virtualization of re-

sources across multiple applications and processes. A paral-

lel program first obtains MOPED resources from the operat-

ing system (OS) in the form of one or more pages that map

to physical addresses assigned to MOPED. The OS maps

the page or pages for any given program into all address

spaces associated with that program (but not into any other

program’s address spaces). The program is then respon-

sible for assigning each communicating agent, such as an

MPI process, a unique 8 B region to be used as a data port

and a poll port to MOPED. When a process loads or stores

to these ports, the address used conveys both a program ID

and a unique process rank to MOPED.

MOPED stores information about each message sent or

received in a message descriptor (details in Sec. 4.2). From

a process’ point of view, a descriptor is represented by a

small integer, a descriptor ID. A send or receive operation

begins by requesting a message descriptor: a load from its

MOPED data port returns a new descriptor ID. The pro-

cess then provides information about the message by storing

values concatenated with the descriptor ID to its MOPED

data port. Once all necessary information has been stored,

the process can proceed with other work. The process can
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check for completion of the message at any time by storing

the message’s descriptor ID to the process’ MOPED poll

port and then loading from the same port.

Message passing applications often prevent process mi-

gration, but MOPED guarantees correct execution despite

interruptions by the OS scheduler and regardless of migra-

tion. Towards this end, descriptor IDs encode both the local

MOPED’s ID as well as an index specific to that MOPED.

Even if a process migrates immediately after obtaining a

descriptor ID, the data from stores needed to complete the

message descriptor as well as loads for polling purposes can

be forwarded to the original MOPED. An additional mech-

anism is necessary to protect against context switches dur-

ing the poll store-load sequence. Such events are rare, so

each MOPED caches only a single mapping from a program

ID/process rank to a descriptor ID. If a process polls using a

port that does not match the cached value, MOPED returns

a specific value indicating that the poll must be retried. In

response, the software re-executes the poll port store to re-

fresh the cache, then re-executes the load.

For evaluation purposes, we integrated MOPED into the

MPICH runtime, capturing and emulating the port opera-

tions within FeS2. No changes were necessary to MPI ap-

plication code. We modified blocking and non-blocking

sends and receives, message completion (MPI Wait), and

all collectives. The result is illustrated in Figure 5. Pro-

cessors avoid the need for software rendezvous by writ-

ing a message descriptor to MOPED. Blocking sends and

receives poll immediately for completion, whereas non-

blocking calls return and use MPI Wait to poll at some later

time. Freeing the CPU from communication enables better

overlap between computation and communication.
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4.2. MOPED hardware

The MOPED hardware (Figure 6) consists of three main

components: a table of outstanding message descriptors, a

table of active matched messages, and a copy control unit

that translates addresses, interfaces with the L2 cache and

directory controllers, and handles cache line re-alignment.

When a process requests a descriptor, the MOPED as-

sociated with the core executing the process (the “local”

MOPED) finds a free entry in its outstanding descriptor ta-

ble, marks that entry as reserved, and returns an ID for it.

The process then writes the descriptor content into the local

MOPED’s table. As shown in Figure 7, each descriptor con-

tains information about the message buffer (virtual address

and length) and information for message matching (com-

munication context, message tag, and process rank within

the communication context [11]). MOPED also records

whether the descriptor corresponds to a send or a receive,

the process’ page table pointer (in x86, the page directory

base register, or cr3) as well as the program ID and process

rank that made the request, which ensures that other pro-

cess’ descriptors cannot be accessed accidentally (or ma-

liciously). The descriptor ID field serves for forwarding,

linking matched descriptors, and other linking purposes.

When a process completes a descriptor, MOPED must

try to find the matching descriptor. However, the two de-

scriptors must first be within a single MOPED. Each de-

scriptor contains the program ID and receive process rank

for the message. These two are hashed to select a MOPED

at which the descriptors can be matched, and the local

MOPEDs forward the descriptors through the on-chip net-

work to the “matching” MOPED identified by the hash.

The matching MOPED marks each descriptor received

in this fashion as valid and as needing a match check.

MOPED’s message matching adopts MPI’s generic match-

ing scheme, which was developed to generalize a wide

range of preceding message passing systems. Two descrip-

tors must come from the same program to match, and must

have opposite types: one send and one receive. They must

also match in context, tag, and sending process rank, but

both tag and sender rank can be matched using wildcards in

the receive descriptor. Implementing matching is straight-

forward: a simple state machine starts by finding the first

descriptor that needs a match search, then walks through
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the outstanding descriptor table searching for a matching

descriptor. If no match is found, the descriptor’s status bit

requesting a match check is cleared—the matching descrip-

tor will appear later. Once a match has been found, the pair

of descriptors is forwarded to the MOPED local to the re-

ceiver process and marked as matched.

Matched descriptors are moved into the active match ta-

ble in a manner similar to that used for matching. When a

table entry is free, the first descriptor with a match bit set

and its matching descriptor are brought into the table and

marked as active. The table entry includes information from

both matched descriptors (see Figure 7). As described be-

low, MOPED copies data for active matches. When a data

transfer completes, the descriptors on both local MOPEDs

are marked as complete and left until the processes poll

them. When a process polls a completed descriptor, the de-

scriptor is freed for reuse.

The copy unit performs data transfer for each matched

message. Each active match table entry contains informa-

tion for address translation and copy management. We use

only a single copy unit, but distinct units could enable more

flexible copy policy. Figure 8 shows a copy unit, including

two address generators, a merge unit, cache request man-

agement, and write back logic.

During copying, an address generator for each buffer

generates individual cache line addresses. Virtual to phys-

ical address translation is handled in a pipelined fashion in

parallel with copying. In practice, double-buffering suf-

fices, since a new translation is only necessary for every

page of copying. Translation of the first two pages in the

buffer could start as soon as a descriptor is valid. MOPED

walks the page tables to obtain physical page addresses. A

staging buffer of a single cache line suffices for walking

page tables, but a slightly larger set can leverage spatial lo-

cality in page table data, since buffers are virtually contigu-

ous. After a page has been copied, its physical address is

discarded, and a new translation obtained for the buffer page

after the page currently being copied. If a page translation

is found to be missing, MOPED interrupts the associated

processor and asks the OS to map the page into memory.

Send and receive buffers can have arbitrary alignment,

Cache_Line_size

Addr State First Last mark leftCopy rightCopy Data

bits 64 2 1 1 1 1 1 Cache_Line_size

Addr State First Last mark leftCopy rightCopy Data

bits 64 2 1 1 1 1 1

Figure 9. Send/receive line structure in copy unit.

thus MOPED must re-align data when copying. As seen in

Figure 9, send and receive lines in the copy unit are cache

lines extended with a physical address, a state, and copy

control bits. Lines resident in MOPED are logically part

of the L2, and tags must be checked on L1 misses. States

include Free, Reserved, Requested, and Present. Reserva-

tions are made in Free lines by assigning a physical ad-

dress in a cyclic manner. If a coherence operation is is-

sued to fill the line (send buffer) or to gain exclusive access

rights (receive buffer), the line becomes Requested. Once

the coherence operation completes, or if the line is already

present in the local cache, the state becomes Present. Data

are copied from Present send buffer lines to Present receive

buffer lines. A receive line may move from Present back to

Reserved if the cache controller needs to revoke exclusive

access rights to the line. The merge logic copies the data

from send lines, then packs and aligns them to the receive

lines. Each send line shifts its data to receive lines using a

fixed left and right shift number (not shown, but stored with

the merge logic). The send/receive lines work as a cyclic

queue. The write back logic then writes full receive lines

into the memory. Once data have been copied from a send

line, its state returns to Free. An analogous transition oc-

curs to receive lines once their data has been written back

into the cache.

To control the copy process, flag bits (First and Last in

Figure 9) are used to record whether a line is the first or

last line in a buffer and whether the left or right halves of

copying are finished. A cycle mark is used to ensure that

copying from send to receive lines only occurs when the

lines are in the same cycle of use.

4.3. MOPED coherence protocols

We extended the directory-based MOESI protocol in

Ruby [16] to support requests from MOPED. Since

MOPED is co-located with an L2 cache, We move any

cache lines from the L1 into the L2 before operating on
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them with MOPED. The directory controllers do not distin-

guish between MOPED and the L2, and the basic MOPED

approach requires no changes to the directory controller.

However, simple extensions to the directory controllers can

further reduce overhead and pollution (see Section 4.5).

For cache lines in a send buffer, MOPED requires read

access (GETS), but retaining a copy in the receiver’s cache

merely pollutes it. To differentiate requests from MOPED

from processor requests, we added an event, M GETS, to

request read access from the L2 cache controller, and an

extra transition state, ID, that indicates that the cache con-

troller is waiting for the return of data from a GETS gener-

ated by MOPED. The directory controller sees no difference

between read requests (GETS messages) generated by the

processor and those generated by MOPED. When data for

an M GETS arrives, it is stored in the copy unit. If exclu-

sive access has been granted by the directory controller, the

line is immediately written back to memory (as if evicted

from the L2). Otherwise, no further action is necessary.

For cache lines in a receive buffer, MOPED requires ex-

clusive access (GETX) in order to fill them with data. In

this case, maintaining a copy in the receiver’s L2 is likely

to be beneficial. The baseline design thus needs only a new

event, M GETX, to ensure that MOPED is notified when

exclusive access has been granted.

4.4. Deadlock avoidance

The MPI runtime can deadlock if the finite resources

available for matching messages are filled with messages

that do not match. This property is theoretically unavoid-

able with finite resources and arbitrary code, but MOPED

may exacerbate the problem by sharing resources among

many message passing programs.

To avoid such problems, MOPED can force the runtime

to back off into using the original software mechanism for

message passing. The easiest way to accomplish this goal is

to track the number of outstanding descriptors for each pro-

gram. When MOPED must refuse a descriptor reservation,

it sets a backoff bit for that program on all MOPEDs. Reser-

vation requests check this backoff bit for the corresponding

program and, if it is set, fail regardless of whether or not

space is actually available in the table. Descriptor poll op-

erations also check the backoff bit. When it is set, and the

polled descriptor has not already been matched, the descrip-

tor is immediately removed from the table. The runtime

must then revert to the original software scheme. Revoca-

tion is necessary to avoid having matching descriptors split

between MOPED and the software mechanism, in which

case they can never be matched. Once all descriptors for the

program have been removed from the table, either by revo-

cation or completion of the message transmission, the count

of outstanding descriptors for the program reaches zero and

the backoff bit for the program is cleared. The backoff bit

is visible to the program, and a software barrier is needed to

synchronize process ranks before again using MOPED.

4.5. Coherence Protocol Optimizations

As we see in Section 6, the baseline MOPED design pro-

duces fairly good improvements in both performance and

coherence traffic, but for maximal benefit, we must also ex-

tend the directory controller design.

We apply two optimizations towards this end: copy op-

timization for send buffer lines, and fill optimization for re-

ceive buffer lines. A send buffer line must merely be copied

at some instant in time, thus making modifications to the

current cache state is unnecessary, and is in fact often detri-

mental to performance. In particular, send buffers are often

reused, and removing them from the sender’s cache forces

the cache to re-load them later before refilling them with

data. The copy optimization thus enables MOPED to re-



quest the data for a cache line without obtaining any access

rights to the line. If the line is held exclusively in a remote

cache, it remains there in a modifiable (or modified) state.

If the line is off the chip, it is brought in but not retained

other than in the MOPED copy unit.

The second optimization applies to receive buffer lines.

As MOPED fills such lines completely with new bits, there

is no need to fetch the old data. Old copies of a line must

still be invalidated, but none of the line’s data need be for-

warded to MOPED. Instead, a line filled with 0 bits is placed

in the cache associated with the receiver’s MOPED in a lo-

cally modified (dirty) state.

We now introduce the three configurations of MOPED

that we use in the evaluations in the next section. The base-

line design, BASEMOPED, extends the original MOESI

cache controller implementation with support for MOPED

requests, but does not change any of the original transitions.

As a result, send buffer data is flushed from the caches when

the receiving MOPED reads it. The two other designs both

fix this problem by changing a single cache controller tran-

sition in order to retain a copy of the send buffer data in

the sender’s cache. Each of the remaining designs adds a

new coherence message type and a few transition states to

the directory controller to support MOPED more efficiently.

The OPTCOPY design enables MOPED to obtain a copy of

a send buffer line without changing the current state of the

line, and the OPTCACHE design extends OPTCOPY to grant

exclusive rights to receive buffer lines without first obtain-

ing a copy of the current data (invalidations are still per-

formed). Serialization of both new operations occurs at the

owner or the directory.

4.6. Hardware complexity

The MOPED design leverages existing hardware to limit

added complexity. For example, copy operations execute

using an extended coherence protocol and relying on the

L2 cache controller to handle the bulk of the work. Ad-

dress translation logic to walk page tables in memory can

be extracted from the core design, with page faults handled

by a core (as in the IBM cell [10]). Finding and executing

matches uses find-first-bit and linear table walks. Merge

logic requires only shifts.

Unmatched descriptors require roughly 24 B of storage,

and a table of 64 suffices. The active match table need only

be big enough to hold the number of matches that can exe-

cute in parallel. In our simulations, we allowed only a single

match. The entry itself occupies about 70 B, and the associ-

ated copy unit occupies 71 B for each send/receive line (we

used four of each). The total storage for these elements is

just over 2 kB per MOPED, which is tiny compared to the

L2 cache with which it is associated (or, for that matter, the

L1 or branch predictor state in a high-end processor).

The overhead incurred for coherence state by MOPED is

Table 1. Simulated Infrastructure

Infrastructure Description

System Cache-coherent CMP

OS Fedora5 (linux2.6.15)

S/W MPICH-2-1.2

Cores 16× Pentium 4, 1GHz

L1 I/D Cache 32 kB, 4-way, 64-byte line size

(Private) 1-processor-cycle latency

L2 Cache (Private, 16×512 kB, 8-way, 64-byte

exclusive of L1s) line size, 10-processor-cycle latency

Coherence Protocol Directory based MOESI

Main Memory 512 MB, 35-cycle latency

Network Topology Hierarchical Switch, 500 MHz

MOPED Parameter Description

Coherence Messages 2 ops/cycle

Copy Unit 4 send + 4 receive lines

essentially negligible. The basic MOPED design adds two

new events and a single transition state to the L2 cache con-

troller. The new transition state handles requests for send

buffer lines, which are not placed in the cache on arrival.

Only a small number of cache lines can be in transition at

any time; these are stored in miss status handling registers

(MSHRs, or TBEs in the Ruby code). MOPED does not

add new (non-transition) states for lines in the cache, and

thus no additional storage is needed for the caches.

Neither of the more advanced MOPED designs adds

more states to the cache controller. The OPTCOPY design

adds four new transition states to the directory controller,

and the OPTCACHE design adds a fifth. Given the num-

ber of transition states in GEMS’ original directory-based

MOESI protocol (4 bits for 12 states), the only design that

requires additional state bits is OPTCACHE, which adds

one bit per line that can be in transition per directory con-

troller. No non-transition states are added to the directory

controller by any version of MOPED, thus no extra state

bits are needed for directory entries.

5. Infrastructure and Benchmarks

We have built a cycle-accurate full-system simulator

based on Simics and FeS2. Simics is a functional simulator

capable of simulating an OS as well as all user applications

executing on it [9]. FeS2 [8] is an accurate execution-driven

timing-model that includes two modules: the cache hier-

archy Ruby from GEMS [16], and Pyrite [19] for branch

predictors and an out-of-order x86 Pentium4 core. Details

of our infrastructure appear in Table 1. The simulator can

be driven by scripts to switch between three modes: func-

tional, warm up, and timing. Measurements are made in

timing mode. Warm up mode performs detailed simulation,

but only to warm up micro architectural structures such as

caches and branch predictors. Functional mode allows fast

execution of initialization code, including the OS boot se-

quence. Timing mode reports detailed statistics on proces-
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Figure 10. Reduction metrics with the BASEMOPED , OPTCOPY and OPTCACHE (relative to unmodified MPI).

sor cycles, cache behavior, and coherence traffic. We chose

a private L2 architecture because of simulator limitations.

However, the analysis and design in this paper apply to

processors with shared memory, including cores that have

shared L2 caches.

We make use of two benchmark suites to evaluate hard-

ware potential as well as our MOPED design. Five of the

size S NAS Parallel Benchmarks (NPB 2.4) serve as exam-

ples of realistic MPI applications. These include SP (scalar

pentadiagonal), CG (conjugate gradient), MG (multigrid),

FT (fast fourier transform), and BT (block tridiagonal). The

second group of benchmarks, from the Intel MPI Bench-

marks (IMB 3.2), represents basic communication patterns

including Pingping (XC, an exchange), Pingpong (PP),

Bcast (BC), Reduce (RD), Gather (GA), and All2All (AA).

These primitives are common in message passing codes.

For IMB, we measure 10 iterations with 16 kB messages.

6. Results and Measurements

In this section, we report our measurements and results.

The baseline design in our comparisons executes unmod-

ified MPI applications without MOPED. We compare the

baseline against the three MOPED designs described in

Section 4.5. As mentioned earlier, MOPED achieves opti-

mal performance when each process in a program occupies

a single processor and never migrates. We pin processes

to processors for this purpose in our experiments, but the

relationship between process and processor is recorded by

MOPED whenever a process writes a descriptor.

The results include reductions in execution cycles and

cache traffic including L1 cache misses, private L2 cache

misses (these hit in another L2), and global L2 misses (ser-

viced by memory). Figure 10 reports all results in four

graphs. Each graph shows one type of reduction for all

three MOPED designs normalized to the baseline. L1 cache

miss reductions (upper right) were nearly identical for all

designs, thus the graph includes only the OPTCACHE re-

sults.

For the IMB benchmarks, BASEMOPED achieves a 66-

93% reduction in execution time and removes most L1

misses as well as most private L2 misses except for AA and

RD. For the NPB, BASEMOPED achieves a 13-40% reduc-

tion in execution time while removing 13-48% of L1 misses

and 24-61% of private L2 misses. In contrast, reductions in

global L2 misses are not large, and PP, XC, CG, and MG

see an increase in global L2 misses. The cause of this prob-

lem is an optimization performed by the original protocol: a

read request to a locally modified line by another cache con-

troller results in forwarding that line exclusively to the re-

questing cache. With MOPED, send buffer lines are copied

and then written back to memory by the receiver’s MOPED,

implying that they must be pulled back in from memory

in order to reuse the send buffer. As both microbench-

marks and applications routinely reuse send buffers, these

programs show an increase in global L2 misses. A single

change to the cache controller design suffices to eliminate

these extra misses; this change is included in both of the

more sophisticated designs, OPTCOPY and OPTCACHE.

The OPTCOPY design extends the directory controller to

provide copies of send buffer lines without modifying other

cache state. Relative to the BASEMOPED design, a signifi-

cant number of global L2 misses become private L2 misses;

in other words, data are retained in other caches on the chip,

thereby reducing memory bandwidth requirements. In some

cases, private L2 misses are still reduced overall compared

with BASEMOPED. Execution time relative to the baseline

is reduced by 76-94% for IMB and 17-45% for NPB.

The OPTCACHE design shows little improvement over

the OPTCOPY design for either set of benchmarks. With

relatively small messages and data sets, message data re-

main in the cache, and MOPED’s copy optimization is

enough to provide optimal behavior. Send buffer data re-



main dirty in the sender’s cache, and receive buffer data

remain dirty in the receiver’s cache. MOPED copies one

buffer to another by simply moving the data line by line

from one cache to the other.

The benefits of MOPED’s receive line fill optimization

become clearer with larger messages. We ran the IMB

benchmarks PP, XC, and BC with 1MB messages to evalu-

ate these benefits. For PP and XC, the OPTCACHE design

transforms roughly 50% of global L2 misses into local L2

misses corresponding to line fill operations. For BC, global

L2 misses are reduced by 93%. The send and receive buffers

are interlocked in terms of performance, thus neither PP nor

XC sees a significant performance improvement: the send

buffer is too large to fit in the sender’s cache and must be

retrieved from memory. BC, however, achieves a 5% reduc-

tion in execution time for OPTCOPY and a 22% reduction

for OPTCACHE, both relative to BASEMOPED.

7. Conclusion

In this paper, we have investigated the potential benefit

of providing hardware support for accelerating data trans-

fer in the context of a chip multiprocessor. We described

the design of a Message Orchestration and Performance En-

hancement Device (MOPED) that operates through the on-

chip coherence protocol to offload synchronization and data

transfer overheads from processors, thereby freeing them

to perform more useful work. MOPED manages sender-

receiver synchronization and integrates with cache and di-

rectory controllers to enhance performance and to reduce

both coherence traffic and pollution associated with mes-

sage passing. Applications that use libraries or runtimes

to support communication can leverage MOPED without

change. As we showed with MPICH, only the runtime

needs to be changed to use MOPED. Although we do not

explore the possibilities in this paper, MOPED’s integration

with the coherence hardware also makes it possible to ex-

plore prioritization policies for message transfers, message

data injection into upper-level caches. By overlapping com-

munication with computation and offloading overhead from

the processors, MOPED enables substantial performance

gains. We believe that MOPED can make code migration

easier by improving the programmer’s return on investment

for parallelization and by enhancing the gains possible with

explicit message passing.
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